Neurons, astrocytes, and blood vessels are organized in functional “neurovascular units” in which the vasculature can impact neuronal activity and, in turn, dynamically adjust to its change. Here we explored different mechanisms by which VEGF, a pleiotropic factor known to possess multiple activities vis-à-vis blood vessels and neurons, may affect adult neurogenesis and cognition. Conditional transgenic systems were used to reversibly overexpress VEGF or block endogenous VEGF in the hippocampus of adult mice. Importantly, this was done in settings that allowed the uncoupling of VEGF-promoted angiogenesis, neurogenesis, and memory. VEGF overexpression was found to augment all three processes, whereas VEGF blockade impaired memory without reducing hippocampal perfusion or neurogenesis. Pertinent to the general debate regarding the relative contribution of adult neurogenesis to memory, we found that memory gain by VEGF overexpression and memory impairment by VEGF blockade were already evident at early time points at which newly added neurons could not yet have become functional. Surprisingly, VEGF induction markedly increased in vivo long-term potentiation (LTP) responses in the dentate gyrus, and VEGF blockade completely abrogated LTP. Switching off ectopic VEGF production resulted in a return to a normal memory and LTP, indicating that ongoing VEGF is required to maintain increased plasticity. In summary, the study not only uncovered a surprising role for VEGF in neuronal plasticity, but also suggests that improved memory by VEGF is primarily a result of increasing plasticity of mature neurons rather than the contribution of newly added hippocampal neurons.
SUMMARYThe angiogenic factor vascular endothelial growth factor A (VEGF) has been shown to have a role in neurogenesis, but how it affects adult neurogenesis is not fully understood. To delineate a role for VEGF in successive stages of olfactory bulb (OB) neurogenesis, we used a conditional transgenic system to suppress VEGF signaling at the adult mouse sub-ventricular zone (SVZ), rostral migratory stream (RMS) and OB, which constitute the respective sites of birth, the migration route, and sites where newly born interneurons mature and integrate within the existing OB circuitry. Following the development of fluorescently tagged adultborn neurons, we show that sequestration of VEGF that is constitutively expressed by distinct types of resident OB neurons greatly impaired dendrite development in incoming SVZ-born neurons. This was evidenced by reduced dendritic spine density of granule cells and significantly shorter and less branched dendrites in periglomerular neurons. Notably, the vasculature and perfusion of the SVZ, RMS and OB were not adversely affected when VEGF suppression was delayed until after birth, thus uncoupling the effect of VEGF on dendritogenesis from its known role in vascular maintenance. Furthermore, a requirement for VEGF was specific to newly born neurons, as already established OB neurons were not damaged by VEGF inhibition. This study thus uncovered a surprising perfusion-independent role of VEGF in the adult brain, namely, an essential role in the maturation of adult-born neurons.
Use-dependent selection of optimal connections is a key feature of neural circuit development and, in the mature brain, underlies functional adaptation, such as is required for learning and memory. Activity patterns guide circuit refinement through selective stabilization or elimination of specific neuronal branches and synapses. The molecular signals that mediate activity-dependent synapse and arbor stabilization and maintenance remain elusive. We report that knockout of the activity-regulated gene cpg15 in mice delays developmental maturation of axonal and dendritic arbors visualized by anterograde tracing and diolistic labeling, respectively. Electrophysiology shows that synaptic maturation is also delayed, and electron microscopy confirms that many dendritic spines initially lack functional synaptic contacts. While circuits eventually develop, in vivo imaging reveals that spine maintenance is compromised in the adult, leading to a gradual attrition in spine numbers. Loss of cpg15 also results in poor learning. cpg15 knockout mice require more trails to learn, but once they learn, memories are retained. Our findings suggest that CPG15 acts to stabilize active synapses on dendritic spines, resulting in selective spine and arbor stabilization and synaptic maturation, and that synapse stabilization mediated by CPG15 is critical for efficient learning.
IL2-caspase 3 chimeric protein may provide a novel approach to the therapy of human IBD, and a possible suggested treatment for other pathological conditions that involve uncontrolled expansion of activated T cells.
Changes in excitatory neuron and synapse structure have been recognized as a potential physical source of age-related cognitive decline. Despite the importance of inhibition to brain plasticity, little is known regarding aging-associated changes to inhibitory neurons. Here we test for age-related cellular and circuit changes to inhibitory neurons of mouse visual cortex. We find no substantial difference in inhibitory neuron number, inhibitory neuronal subtypes, or synapse numbers within the cerebral cortex of aged mice compared with younger adults. However, when comparing cortical interneuron morphological parameters, we find differences in complexity, suggesting that arbors are simplified in aged mice. two-photon microscopy has previously shown that in contrast to pyramidal neurons, inhibitory interneurons retain a capacity for dendritic remodeling in the adult. We find that this capacity diminishes with age and is accompanied by a shift in dynamics from balanced branch additions and retractions to progressive prevalence of retractions, culminating in a dendritic arbor that is both simpler and more stable. Recording of visually evoked potentials shows that aging-related interneuron dendritic arbor simplification and reduced dynamics go hand in hand with loss of induced stimulus-selective response potentiation (SRP), a paradigm for adult visual cortical plasticity. Chronic treatment with the antidepressant fluoxetine reversed deficits in interneuron structural dynamics and restored SRP in aged animals. Our results support a structural basis for age-related impairments in sensory perception, and suggest that declines in inhibitory neuron structural plasticity during aging contribute to reduced functional plasticity. Structural alterations in neuronal morphology and synaptic connections have been proposed as a potential physical basis for age-related decline in cognitive function. Little is known regarding aging-associated changes to inhibitory neurons, despite the importance of inhibitory circuitry to adult cortical plasticity and the reorganization of cortical maps. Here we show that brain aging goes hand in hand with progressive structural simplification and reduced plasticity of inhibitory neurons, and a parallel decline in sensory map plasticity. Fluoxetine treatment can attenuate the concurrent age-related declines in interneuron structural and functional plasticity, suggesting it could provide an important therapeutic approach for mitigating sensory and cognitive deficits associated with aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.