Background
Spinal cord stimulation (SCS) is a useful neuromodulatory technique for treatment of certain neuropathic pain conditions. However, the optimal stimulation parameters remain unclear.
Methods
In rats after L5 spinal nerve ligation, we compared the inhibitory effects on mechanical hypersensitivity from bipolar SCS of different intensities (20%, 40%, 80% motor threshold) and frequencies (50-Hz, 1-kHz, and 10-kHz). We then compared the effects of 1-kHz and 50-Hz dorsal column stimulation at high and low stimulus intensities on conduction properties of afferent Aα/β-fibers and spinal wide-dynamic-range neuronal excitability.
Results
Three consecutive daily SCS at different frequencies progressively inhibited mechanical hypersensitivity in an intensity-dependent manner. At 80% motor threshold, the ipsilateral paw withdrawal threshold (%preinjury) increased significantly from pre-SCS measures, beginning with the first day of SCS at the frequencies of 1-kHz (50.2 ± 5.7% from 23.9 ± 2.6%, n = 19, mean ± SEM) and 10-kHz (50.8 ± 4.4 % from 27.9 ± 2.3%, n = 17), while it was significantly increased beginning on the second day in the 50-Hz group (38.9 ± 4.6% from 23.8 ± 2.1%, n = 17). At high intensity, both 1-kHz and 50-Hz dorsal column stimulation reduced Aα/β-compound action potential size recorded at the sciatic nerve, but only 1-kHz stimulation was partially effective at the lower intensity. The number of actions potentials in C-fiber component of wide-dynamic-range neuronal response to windup-inducing stimulation was significantly decreased after 50-Hz (147.4 ± 23.6 from 228.1 ± 39.0, n = 13), but not 1-kHz (n = 15), dorsal column stimulation.
Conclusions
Kilohertz SCS attenuated mechanical hypersensitivity in a time course and amplitude that differed from conventional 50-Hz SCS, and may involve different peripheral and spinal segmental mechanisms.
Procedure-specific prescribing recommendations may help provide guidance to clinicians who are currently overprescribing opioids after surgery. Multidisciplinary, patient-centered consensus guidelines for more procedures are feasible and may serve as a tool in combating the opioid crisis.
Summary statement
This study suggests that electrical stimulation of low-threshold Aβ-fibers induces prolonged inhibition of excitatory postsynaptic current evoked by high-threshold afferent inputs in lamina II neurons.
Chronic neuropathic pain is often refractory to current pharmacotherapies. The rodent Mas-related G-protein-coupled receptor subtype C (MrgC) shares substantial homogeneity with its human homolog, MrgX1, and is located specifically in small-diameter dorsal root ganglion (DRG) neurons. However, evidence regarding the role of MrgC in chronic pain conditions has been disparate and inconsistent. Accordingly, the therapeutic value of MrgX1 as a target for pain treatment in humans remains uncertain. Here, we found that intrathecal injection of BAM8-22 (a 15-amino acid peptide MrgC agonist) and JHU58 (a novel dipeptide MrgC agonist) inhibited both mechanical and heat hypersensitivity in rats after an L5 spinal nerve ligation (SNL). Intrathecal JHU58-induced pain inhibition was dose-dependent in SNL rats. Importantly, drug efficacy was lost in Mrg-cluster gene knockout (Mrg KO) mice and was blocked by gene silencing with intrathecal MrgC siRNA and by a selective MrgC receptor antagonist in SNL rats, suggesting that the drug action is MrgC-dependent. Further, in a mouse model of trigeminal neuropathic pain, microinjection of JHU58 into ipsilateral subnucleus caudalis inhibited mechanical hypersensitivity in wild-type but not Mrg KO mice. Finally, JHU58 attenuated the mEPSC frequency both in medullary dorsal horn neurons of mice after trigeminal nerve injury and in lumbar spinal dorsal horn of mice after SNL. We provide multiple lines of evidence that MrgC agonism at spinal but not peripheral sites may constitute a novel pain inhibitory mechanism that involves inhibition of peripheral excitatory inputs onto postsynaptic dorsal horn neurons in different rodent models of neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.