Melilotus is an important forage legume, with high values as feed and medicine, and widely used as green manure, honey plant, and wildlife habitat enhancer. The genetic diversity, structure and subdivision of this forage crop remain unclear, and plant genetic resources are the basis of biodiversity and ecosystem diversity and have attracted increasing attention. In this study, the whole collection of 573 accessions from the National Gene Bank of Forage Germplasm (NGBFG, China) and 48 accessions from the National Plant Germplasm System (NPGS, USA) in genus Melilotus were measured with respect to five seed characters: seed length, width, width-to-length ratio, circumference and 100-seed weight. Shannon’ genetic diversity index (H’) and phenotypic differentiation (Pst) were calculated to better describe the genetic diversity. The ITS and matK sequences were used to construct phylogenetic trees and study the genetic relationships within genus Melilotu. Based on seed morphology and molecular marker data, we preliminarily developed core collections and the sampling rates of M. albus and M. officinalis were determined to be 15% and 25%, respectively. The results obtained here provide preliminary sorting and supplemental information for the Melilotus collections in NGBFG, China, and establish a reference for further genetic breeding and other related projects.
The seed morphology of 40 taxa within the genus Hypericum (Hypericaceae) from China, representing 9 sections of the genus, was examined using both Light and Scanning Electron Microscopy to evaluate the taxonomic relevance of macro‐ and micro‐morphological features. Details articulating variation in seed size, color, shape, appendages, and seed coat ornamentation are described, illustrated, and compared, and their taxonomic importance is discussed. Seeds were generally brown in color and cylindric‐ellipsoid to prolonged cylindric in shape. Seed size displayed wide variation, ranging from 0.37–1.91 mm in length and 0.12–0.75 mm in width. Seed appendages were observed as a characteristic morphological feature. Seed surface ornamentation has high phenotypic plasticity, and four types (reticulate, foveolate, papillose, and ribbed) can be recognized. In general, seed color and shape have limited taxonomic significance. However, some other features represent informative characters that can be used efficiently in distinguishing the studied taxa at the section and/or species levels. The findings illustrate that considerable taxonomic knowledge can be obtained by investigating the seed features of Hypericum, and the use of Scanning Electron Microscopy can reveal inconspicuous morphological affinities among species and play a role in taxonomic and systematic studies of the genus Hypericum.Research Highlights Macro‐ and micro‐morphological features of seeds of 40 Hypericum taxa from China were examined using Light and Scanning Electron Microscopy, providing the first broad study regarding seed morphology for Hypericum from China. Details and variations of seed size, shape, color, surface ornamentation, and appendages are fully presented. Seed features and their variation have important taxonomic significance at the section and/or species levels within Hypericum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.