In mature fields, wells and pipelines are often oversized for the current operating conditions. This is because they have been primarily designed to handle early and midlife production, which may lead to slugging issues in later field life. The resulting flow fluctuations frequently lead to liquid handling problems caused by excessive liquid levels and pressure surges in the first stage separator. This can be an important source of downtime due to facility trips and deferment from sub-optimal facility operations. Furthermore, slugs travelling through topside piping can cause integrity issues when they impact bends.In flowline-riser systems, riser-induced slugging can lead to large slugs, especially in deepwater systems. These can usually not be contained in a platform-based separator. In such cases gas lift and conventional choking are often used to mitigate slugging. These two methods have drawbacks, however. For gas lift a source of compressed lift gas must be connected to the riser base and the volumes required to mitigate slugging may cause constraints in gas handling. Conventional choking leads to production deferment due to the backpressure imposed by a partially closed choke.In recent years "active" slug control methods have been developed to overcome these drawbacks. One such system is a relatively inexpensive solution developed by Shell Global Solutions* known as the Smart Choke. This system has been installed at several locations worldwide and has been proven to be very effective in stabilizing slugging in flowlines and risers. Here, the topside choke is actively controlled to mitigate riser-induced slugging and acts only if flow surges are observed, reducing the peak flow rate into the separator. Between slugs, the choke opens, reducing the imposed backpressure. Since flow fluctuations are reduced, a flowline can be operated at higher average flow rate as the topside facilities can be operated at higher throughputs without risking excessive separator liquid levels. Field data from case histories in the GOM, Malaysia and Nigeria indicate that production gains of 10% are often possible.This paper presents the modeling, implementation and the data obtained from operations of the Smart Choke implementation for a deepwater facility in Nigeria. The objective of the Smart Choke is to stabilize * Shell Global Solutions is a network of independent technology companies in the Shell Group. In this document, the expressions "Shell" or "Shell Global Solutions" are sometimes used for convenience where reference is made to these companies in general, or where no useful purpose is served by identifying a particular company.the flow from the riser and to reduce the gas lift requirement. A feasibility study was performed to analyze the slugging behavior of the pipeline and the impact of no control, gas lift and, the combination of gas lift and Smart Choke. Upon favorable modeling results, the Smart Choke was moved to the project stage and implemented. Field data are presented to demonstrate how the Smart Choke was able ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.