Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers
Circular RNAs (circRNAs) are group of noncoding RNAs derived from back-splicing events. Accumulating evidence certifies the critical roles of circRNAs in human tumorigenesis. However, the role and biogenesis of circRNAs in cervical cancer are still unclear. Here, a novel identified circRNA, circSLC26A4, was found to be upregulated in cervical cancer tissue and cells. Clinically, the high expression of circSLC26A4 was related to the poor survival of cervical cancer patients. Functionally, cellular experiments indicated that circSLC26A4 knockdown repressed the proliferation, invasion, and tumor growth in vitro and in vivo. Furthermore, circSLC26A4 acted as the sponge of miR-1287-5p; moreover, miR-1287-5p targeted the 3′ UTR of HOXA7 mRNA. Mechanistically, RNA binding protein (RBP) quaking (QKI) was identified to interact with the QKI response elements (QREs) in SLC26A4 gene introns, thereby promoting circSLC26A4 biogenesis. In conclusion, these findings demonstrate that circSLC26A4 facilitates cervical cancer progression through the QKI/circSLC26A4/miR-1287-5p/HOXA7 axis, which might bring novel therapeutic strategies for cervical cancer.
BackgroundThe fine balance of Th17/Treg is crucial for maintenance of immune homeostasis. The objective of this study was to investigate the balance of Th17/Treg and the expression of related cytokines in Uighur cervical cancer patients.MethodsPeripheral blood was collected from 65 cases of cervical cancer patients, 42 cases of cervical CIN patients and 40 healthy people. Flow cytometry was used to detect the percentages of T cell subsets, including CD3+ T cells, CD4+ T cells, CD8+ T cells, Treg cells and Th17 cells. ELISA assay was conducted to detect expression levels of TGF-β, IL-6, IL-10, IL-17, IL-23 and IFN-γ.ResultsThere were no significant difference in the levels of CD3+ T cells, CD4+ T cells, CD8+ T cells, and the ratio of CD4+/CD8+ among the cervical cancer group, the CIN group and the healthy control group. However, compared with the healthy control group, the percentages of CD4+ CD25+ Treg, CD4+CD25+CD127- Treg, CD4+IL17+ Th17, CD4+CD25+Foxp3+, CD4+CD25- Foxp3+, CD8+CD25+CD127-Treg and CD8+CD25+Foxp3 were significantly higher in the cervical cancer group and the CIN group. Similar results were also found in the Th17/Treg ratio and the related cytokines. There was no significant difference between the cervical cancer group and the CIN group. Additionally, Th17 cell levels were positively correlated with IL-6, IL-23 and IL-17. Also, Treg cell levels were positively correlated with TGF-β, IL-10 and IL-6. Contrarily, Treg cell levels and IFN-γ were negatively correlated.ConclusionsOur data indicated that the Th17/Treg balance was broken in peripheral blood of cervical cancer patients. Analysis of Th17/Treg balance may have a significant implication in diagnosing cervical cancer.Virtual slidesThe virtual slide for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1813823795931511
Oncogenic BRAF, which drives cell transformation and proliferation, has been detected in approximately 50% of human malignant melanomas and 5% to 15% of colorectal cancers. Despite the remarkable clinical activities achieved by vemurafenib and dabrafenib in treating BRAF V600E metastatic melanoma, their clinical efficacy in BRAF V600E colorectal cancer is far less impressive. Prior studies suggested that feedback activation of EGFR and MAPK signaling upon BRAF inhibition might contribute to the relative unresponsiveness of colorectal cancer to the first-generation BRAF inhibitors. Here, we report characterization of a dual RAF kinase/ EGFR inhibitor, BGB-283, which is currently under clinical investigation. In vitro, BGB-283 potently inhibits BRAF V600E -activated ERK phosphorylation and cell proliferation. It demonstrates selective cytotoxicity and preferentially inhibits proliferation of cancer cells harboring BRAF V600E and EGFR mutation/amplification. In BRAF V600E colorectal cancer cell lines, BGB-283 effectively inhibits the reactivation of EGFR and EGFR-mediated cell proliferation. In vivo, BGB-283 treatment leads to dose-dependent tumor growth inhibition accompanied by partial and complete tumor regressions in both cell line-derived and primary human colorectal tumor xenografts bearing BRAF V600E mutation. These findings support BGB-283 as a potent antitumor drug candidate with clinical potential for treating colorectal cancer harboring BRAF V600E mutation.
The present study is to measure the expression of programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), as well as its clinical significance in cervical cancer patients. Our results showed that different T cell subsets in patients with cervical cancer had high expression of PD-1, and DCs had high expression of PD-L1. High expression of PD-1 on Treg cells in cervical cancer patients facilitated the production of TGF-β and IL-10 but inhibited the production of IFN-γ. Cervical cancer elevated the expression of PD-1 and PD-L1 in mRNA level. PD-1 expression in peripheral blood of cervical cancer patients was related with tumor differentiation, lymph node metastasis, and invasiveness. PD-1/PD-L1 pathway inhibited lymphocyte proliferation but enhanced the secretion of IL-10 and TGF-β in vitro. In summary, our findings demonstrate that elevated levels of PD-1/PD-L1, TGF-β, and IL-10 in peripheral blood of cervical cancer patients may negatively regulate immune response against cervical cancer cells and contribute to the progression of cervical cancer. Therefore, PD-1/PD-L1 pathway may become an immunotherapy target in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.