Identifying molecular mediators of neural circuit development and/or function that contribute to circuit dysfunction when aberrantly reengaged in neurological disorders is of high importance. The role of the TWEAK/Fn14 pathway, which was recently reported to be a microglial/neuronal axis mediating synaptic refinement in experience-dependent visual development, has not been explored in synaptic function within the mature central nervous system. By combining electrophysiological and phosphoproteomic approaches, we show that TWEAK acutely dampens basal synaptic transmission and plasticity through neuronal Fn14 and impacts the phosphorylation state of pre- and postsynaptic proteins in adult mouse hippocampal slices. Importantly, this is relevant in two models featuring synaptic deficits. Blocking TWEAK/Fn14 signaling augments synaptic function in hippocampal slices from amyloid-beta–overexpressing mice. After stroke, genetic or pharmacological inhibition of TWEAK/Fn14 signaling augments basal synaptic transmission and normalizes plasticity. Our data support a glial/neuronal axis that critically modifies synaptic physiology and pathophysiology in different contexts in the mature brain and may be a therapeutic target for improving neurophysiological outcomes.
Novel therapies and biomarkers are needed for the treatment of acute ischemic stroke (AIS). This study aimed to provide comprehensive insights into the dynamic proteome changes and underlying molecular mechanisms post-ischemic stroke. TMT-coupled proteomic analysis was conducted on mouse brain cortex tissue from five time points up to 4 weeks poststroke in the distal hypoxic-middle cerebral artery occlusion (DH-MCAO) model. We found that nearly half of the detected proteome was altered following stroke, but only ∼8.6% of the changes were at relatively large scales. Clustering on the changed proteome defined four distinct expression patterns characterized by temporal and quantitative changes in innate and adaptive immune response pathways and cytoskeletal and neuronal remodeling. Further analysis on a subset of 309 “top hits”, which temporally responded to stroke with relatively large and sustained changes, revealed that they were mostly secreted proteins, highly correlated to different cortical cytokines, and thereby potential pharmacodynamic biomarker candidates for inflammation-targeting therapies. Closer examination of the top enriched neurophysiologic pathways identified 57 proteins potentially associated with poststroke recovery. Altogether, our study generated a rich dataset with candidate proteins worthy of further validation as biomarkers and/or therapeutic targets for stroke. The proteomics data are available in the PRIDE Archive with identifier PXD025077.
Acute ischemic stroke (AIS), a neurological injury resulting from blood clots, is the second most common cause of death worldwide. Novel therapeutics are urgently needed. Rapid developments in instrumentation and bioinformatics have resulted in increased use of mass spectrometry-based proteomics as an effective tool for the in-depth study of AIS. This review focuses on proteomics investigations of AIS in animal models. We highlight the study findings in system-wide protein abundance changes and molecular mechanisms underlying AIS with or without therapeutic intervention, as well as prestroke prognosis investigations. This review reveals that common molecular pathways related to ischemic injury and spontaneous recovery have been uncovered and part of AIS-changed proteins have been repeatedly identified, indicating the promise of proteomics in generating novel therapeutic targets and biomarker candidates. We also discuss challenges, alleviating strategies, and perspectives of mass spectrometrybased proteomics in AIS research and call for a broad application of systems-level investigations on preclinical AIS molecular mechanism elucidation, target discovery and validation, and therapeutics development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.