Saponins of Panax notoginseng (Burk.) F.H. Chen have been classified as a type of composition in functional foods for numerous diseases. However, its mild effects and other characteristics limited clinical applications in diseases. Inspired by "nine steaming and nine processing" of P. notoginseng in traditional Chinese medicine, we developed a "steaming"-mimic protocol, which significantly changed the composition of saponins of P. notoginseng from the original, R1, Rg1, Re, Rb1, and Rd (raw-PNS), to the products after steaming, 20S/R-Rh1, Rk3, Rh4, 20S/R-Rg3, Rk1, and Rg5 (N-PNS). Surprisingly, N-PNS demonstrated promising activities in improving hyperlipidemia and reducing body weight and weight of white adipose tissue and the inhibition of adipogenesis in obese mice. In accordance with the results in vivo, N-PNS remarkably blunted adipogenesis at the early stage of differentiation dose-dependently in vitro. Moreover, we demonstrated that the activity may involve the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway by promoting phosphorylation of AMPK T172 and downregulating its downstream factors: sterol regulatory element binding protein 1c, stearoyl-CoA desaturase 1, and fatty acid synthase. Taken together, the steaming-induced eight compositions of saponins showed a very promising function in improving hyperlipidemia and obesity both in vivo and in vitro, providing fundamental evidence for future study and application in treatment of hyperlipidemia, obesity, and other lipid-related metabolic syndromes.
Eurysoloids A (1) and
B (2), two novel
diastereomeric sesterterpenoids possessing a pentacyclic 5/6/5/10/5
framework with an unusual macrocyclic ether system, were isolated
from Eurysolen gracilis Prain. Their structures were
unambiguously determined by spectroscopic, single-crystal X-ray diffraction
and DP4+ analyses. A plausible biosynthetic pathway for compounds 1 and 2 was proposed. Both compounds exhibited
immunosuppressive activity via inhibiting the production of cytokine
IFN-γ of T cells, and compound 2 inhibited adipogenesis
in 3T3-L1 adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.