Transgenic head cabbage (Brassica oleracea var. capitata), resistant to diamondback moth (Plutella xylostella) larvae, was developed through Agrobacterium tumefaciens-mediated transformation with Bacillus thuringiensis (Bt) cry genes using a modified procedure. Factors important for transformation included cabbage cultivar; preculture and coculture of explants on a callus initiation medium; use of appropriate amount; and delay in initial application of selective agents. A total of 15 independent transformed lines with over 100 plants were obtained from several transformation experiments, representing an overall transformation efficiency of ,1%. Cabbage plants transformed with a synthetic Bt gene, cry1Ab3, were all resistant to larvae of the diamondback moth, whereas all plants transgenic for cry1Ia3, a wild-type Bt gene, were susceptible. As a first step towards testing the hypothesis that reduced exposure of Bt to target insects would delay the evolution of insect resistance to Bt, cry1Ab3 expression was put under the transcriptional control of the soybean woundinducible vspB promoter and transgenic cabbage was obtained. Insect bioassay showed that such plants were all resistant to diamondback moth even without induction for the expression of Bt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.