Highly efficient blue organic light-emitting diodes (OLEDs) are necessary for high-resolution full-color displays and solid-state lighting applications.[1] The dopant-host system is often adopted to improve OLED performance. However, electroluminescence (EL) properties, including color purity, are extremely sensitive to the dopant concentration, [2] which is usually less than 2 wt % with a AE0.5 wt % variation. Precise control of the dopant concentration using co-evaporation methods is not an easy task. The development of highperformance blue-light-emitting materials suitable for nondoped OLEDs is one method of circumventing such fabrication problems. With many literature examples, nondoped-type
Two phosphorus-containing diamine compounds, bis(4-aminophenoxy)-phenyl phosphine oxide and bis(3-aminophenyl)phenyl phosphine oxide, were synthesized for use as curing agents of epoxy resins. Phosphorylated epoxy resins were obtained by curing Epon 828 and Eponex 1510 with these two diamine agents. For raising the phosphorus contents of the resulting epoxy resins, the phosphorus-containing epoxy, bis(glycidyloxy)phenyl phosphine oxide (BGPPO), was also used. These two diamine agents showed similar reactivity toward epoxies. Their reactivities were higher than DDS and lower than DDM. High char yields in TGA evaluation were found for all the phosphorylated epoxy resins, implying their high flame retardancy. The excellent flameretardant properties of these phosphorylated epoxy resins were also demonstrated by the high limiting oxygen index (LOI) values of 33 to 51.
Molecular glass material (4-(5-(4-(diphenylamino)phenyl)-2-oxadiazolyl)phenyl)triphenylsilane (Ph(3)Si(PhTPAOXD)) was used as the blue light-emitting material in the fabrication of high-performance organic light-emitting diodes (OLEDs). In the optimization of performance, five types of OLEDs were constructed from Ph(3)Si(PhTPAOXD): device I, ITO/NPB/Ph(3)Si(PhTPAOXD)/Alq(3)/Mg:Ag, where NPB and Alq(3) are 1,4-bis(1-naphylphenylamino)biphenyl and tris(8-hydroxyquinoline)aluminum, respectively; device II, ITO/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where TPBI is 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene; device III, ITO/Ph(2)Si(Ph(NPA)(2))(2)/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where Ph(2)Si(Ph(NPA)(2))(2) is bis(3,5-bis(1-naphylphenylamino)phenyl)-diphenylsilane, a newly synthesized tetraphenylsilane-containing triarylamine as hole-transporting material; device IV, ITO/Ph(2)Si(Ph(NPA)(2))(2)/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag; device V, ITO/CuPc/NPB /Ph(3)Si(PhTPAOXD)/Alq(3)/LiF/Al, where CuPc is Cu(II) phthalocyanine. Device performances, including blue color purity, electroluminescence (EL) intensity, current density, and efficiency, vary drastically by changing the device thickness (100-600 A of the light-emitting layer) and materials for hole-transporting layer (NPB and/or Ph(2)Si(Ph(NPA)(2))(2)) or electron-transporting material (Alq(3) or TPBI). One of the superior OLEDs is device IV, showing maximum EL near 19 000 cd/m(2) with relatively low current density of 674 mA/cm(2) (or near 3000 cd/m(2) at 100 mA/cm(2)) and high external quantum efficiency of 2.4% (1.1 lm/W or 3.1 cd/A). The device possesses good blue color purity with EL emission maximum (lambda(max)(EL)) at 460 nm, corresponding to (0.16, 0.18) of blue color chromaticity on CIE coordinates. In addition, the device is reasonably stable and sustains heating over 100 degrees C with no loss of luminance on the basis of the annealing data for device V. Formation of the exciplex at the interface of NPB and Ph(3)Si(PhTPAOXD) layers is verified by EL and photoluminescence (PL) spectra studies on the devices with a combination of different charge transporting materials. The EL due to the exciplex (lambda(max)(EL) at 490-510 nm) can be properly avoided by using a 200 A layer of Ph(3)Si(PhTPAOXD) in device I, which limits the charge-recombination zone away from the interface area.
In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.