Luting composites could slightly modify the final color of ceramic veneers. Color matching of a try-in paste to the corresponding luting composite was not always achieved in the 0.7 or 0.5 mm thicknesses.
LncRNA PTENP1 is a competitive endogenous RNA (ceRNA) involved in decoying miR-106b in multiple diseases. This study investigates the interaction of PTENP1 and miR-106b in cell proliferation, apoptosis and epithelial-mesenchymal transition (EMT) in cervical cancer. The expressions of PTENP1, miR-106b and PTEN were determined in cervical cancer tissues, adjacent normal tissues, cervical cancer cells (HeLa, SiHa, C33A and CasKi) and normal cervical epithelial H8 cells. Up-regulation of PTENP1 and down-regulation of miR-106b were conducted in HeLa and CasKi cells by transfecting cells with corresponding miRNA mimics and inhibitors. Bioinformatics analysis, luciferase reporter assay and RNA-pull down assay were performed to verify the association of miR-106b, PTEN, and PTENP1. Cell growth and cell apoptosis were determined by CCK-8 and flow cytometry analysis. It was found that the expressions of PTENP1 and PTEN were up-regulated and that of miR-106b were down-regulated in cervical cancer tissues and cells. PTENP1 localized in cytoplasm and competitively bound to miR-106b. Up-regulation of PTENP1 and down-regulation of miR-106b contributed to increased expressions of PTEN and E-cadherin. Decreased expression of miR-106b, ZEB1, Snail and Vimentin, resulted in inhibiting cell proliferation and promoting cell apoptosis. Over-expression of PTENP1 and miR-106b accelerated cell proliferation and slowed down cell apoptosis. miR-106b inhibited the expression of PTEN. Our results suggest that LncRNA PTENP1 inhibits cervical cancer progression by competitively binding to miR-106b, leading to promote PTEN expression, inhibit cell proliferation and EMT and induce cell apoptosis in cervical cancer cells ARTICLE HISTORY
Patients with ulcerative colitis are at a very high risk of developing colorectal cancer. Corticotrophin-releasing hormone (CRH) family peptides and their receptors (CRHRs) are found to modulate inflammation and tumor cell growth. However, the role of CRH family peptides and their receptors in the inflammation-related colon cancer is still unknown. The aim of this study was to investigate the functions of CRHR1 signaling on the development of colitis-associated cancer (CAC). Crhr1-deficient (Crhr1 K/K ) mice were used to explore the role of CRHR1 in the development of azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced CAC. WT (Crhr1 C/C ) littermates were set as control. We found that the expression of CRHR1 and its endogenous ligands: urocortin and CRH were enhanced in the colon of Crhr1 C/C mice during treatment with AOM and DSS. Tumorigenesis was significantly reduced in Crhr1 K/K mice, determined by analysis of survival rate (increased by 20%), weight loss (decreased by 10%), tumor formation (decreased by 60% in tumor number), histological scores (decreased by 58%), and cytokine production. During early CAC tumorigenesis, Crhr1 K/K mice exhibited much less tumorigenesis, accompanied by lower inflammatory response, including decreased IL1b, IL6 and TNFa expression and macrophage infiltration and increased IL10 expression. Moreover, Crhr1 K/K mice displayed a reduced activation of NFkB and STAT3 phosphorylation with decreased proliferating and enhanced apoptotic cells in the colon. In conclusion, CRHR1 has a proinflammatory and therefore a protumorigenesis effect in terms of CAC, which may be helpful to develop new therapeutic approaches for inflammation and cancer prevention and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.