Integrated-resonant units (IRUs), associating various meta-atoms, resonant modes, and functionalities into one supercell, have been promising candidates for tailoring composite and multifunctional electromagnetic responses with additional degrees of freedom. Integrated-resonant metadevices can overcome many bottlenecks in conventional optical devices, such as broadband achromatism, efficiency enhancement, response selectivity, and continuous tunability, offering great potential for performant and versatile application scenarios. We focus on the recent progress of integrated-resonant metadevices. Starting from the design principle of IRUs, a variety of IRU-based characteristics and subsequent practical applications, including achromatic imaging, light-field sensing, polarization detection, orbital angular momentum generation, metaholography, nanoprinting, color routing, and nonlinear generation, are introduced. Existing challenges in this field and opinions on future research directions are also provided.
Water, the source of life, is a more abundant, low‐cost, and environment‐friendly candidate material for tunable meta‐devices compared to conventional approaches in the microwave region. Wavefront shaping can be flexibly manipulated by adjusting the shapes and temperature of water‐based meta‐atoms, but individual control of each meta‐atom is complicated and inconvenient, especially for continuous tunability. Here, we propose a design strategy based on the phase compensation mechanism to continuously tune the properties of water‐based meta‐lenses at 5 GHz. Integrated‐resonant units (IRUs) with coupled water pillars are carefully designed to effectively tailor the balance between polarization conversion efficiency and phase compensation. By changing the filling height of water in the designed meta‐lens from 10 to 60 mm, the focal length can be tuned from 228 to 424 mm. The off‐axis focusing of the meta‐lens is also demonstrated in which the deflection angle is adjustable from around 0° to 5°. This work will pave the way for designing tunable water‐based meta‐devices and facilitating their applications in microwave imaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.