IMPORTANCE Large-scale genome-wide association studies in the European population have identified 90 risk variants associated with Parkinson disease (PD); however, there are limited studies in the largest population worldwide (ie, Asian).OBJECTIVES To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts.DESIGN SETTING, AND PARTICIPANTS Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria. MAIN OUTCOMES AND MEASURESGenotypes of common variants, association with disease status, and polygenic risk scores. RESULTS Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10 −10 in metaanalysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I 2 =67.1%; P = 3.40 × 10 −3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6. 81 × 10 −12 ).CONCLUSIONS AND RELEVANCE This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.
We and others found two polymorphic LRRK2 (leucine-rich repeat kinase 2) variants (rs34778348:G>A; p.G2385R and rs33949390:G>C; p.R1628P) associated with Parkinson disease (PD) among Chinese patients, but the common worldwide rs34637584:G>A; p.G2019S mutation, was absent. Focusing exclusively on Han Chinese, we first sequenced the coding regions in young onset and familial PD patients and identified 59 variants. We then examined these variants in 250 patients and 250 control subjects. Among the 17 polymorphic variants, five demonstrated different frequency in cases versus controls and were considered in a larger sample of 1,363 patients and 1,251 control subjects. The relative risk of an individual with both p.G2385R and p.R1628P is about 1.9, and this is reduced to 1.5-1.6 if the individual also carries rs7133914:G>C; p.R1398H or rs7308720:C>A: p.N551K. The risk of a carrier with p.R1628P is largely negated if the individual also carries p.R1398H or p.N551K. In dopaminergic neuronal lines, p.R1398H had significantly lower kinase activity, whereas p.G2385R and p.R1628P showed higher kinase activity than wild type. We provided the first evidence that multiple LRRK2 variants exert an individual effect and together modulate the risk of PD among Chinese.
Purpose To use resting-state functional magnetic resonance (MR) imaging and graph theory approaches to investigate the brain functional connectome and its potential relation to disease severity in Parkinson disease (PD). Materials and Methods This case-control study was approved by the local research ethics committee, and all participants provided informed consent. There were 153 right-handed patients with PD and 81 healthy control participants recruited who were matched for age, sex, and handedness to undergo a 3-T resting-state functional MR examination. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 90 brain regions, and the topologic properties were analyzed by using graph theory approaches. Nonparametric permutation tests were used to compare topologic properties, and their relationship to disease severity was assessed. Results The functional connectome in PD showed abnormalities at the global level (ie, decrease in clustering coefficient, global efficiency, and local efficiency, and increase in characteristic path length) and at the nodal level (decreased nodal centralities in the sensorimotor cortex, default mode, and temporal-occipital regions; P < .001, false discovery rate corrected). Further, the nodal centralities in left postcentral gyrus and left superior temporal gyrus correlated negatively with Unified Parkinson's Disease Rating Scale III score (P = .038, false discovery rate corrected, r = -0.198; and P = .009, false discovery rate corrected, r = -0.270, respectively) and decreased with increasing Hoehn and Yahr stage in patients with PD. Conclusion The configurations of brain functional connectome in patients with PD were perturbed and correlated with disease severity, notably with those responsible for motor functions. These results provide topologic insights into understanding the neural functional changes in relation to disease severity of PD. RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on September 11, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.