Given a set of images that contain objects from a common category, object co-segmentation aims at automatically discovering and segmenting such common objects from each image. During the past few years, object co-segmentation has received great attention in the computer vision community. However, the existing approaches are usually designed with misleading assumptions, unscalable priors, or subjective computational models, which do not have sufficient robustness for dealing with complex and unconstrained real-world image contents. This paper proposes a novel two-stage co-segmentation framework, mainly for addressing the robustness issue. In the proposed framework, we first introduce the concept of union background and use it to improve the robustness for suppressing the image backgrounds contained by the given image groups. Then, we also weaken the requirement for the strong prior knowledge by using the background prior instead. This can improve the robustness when scaling up for the unconstrained image contents. Based on the weak background prior, we propose a novel MR-SGS model, i.e., manifold ranking with the self-learned graph structure, which can infer suitable graph structures in a data-driven manner rather than building the fixed graph structure relying on the subjective design. Such capacity is critical for further improving the robustness in inferring the foreground/background probability of each image pixel. Comprehensive experiments and comparisons with other state-of-the-art approaches can demonstrate the effectiveness of the proposed work.
Multiple Object Tracking (MOT) focuses on tracking all the objects in a video. Most MOT solutions follow a tracking-by-detection or a joint detection tracking paradigm to generate the object trajectories by exploiting the correlations between the detected objects in consecutive frames. However, according to our observations, considering only the correlations between the objects in the current frame and the objects in the previous frame will lead to an exponential information decay over time, thus resulting in a misidentification of the object, especially in scenes with dense crowds and occlusions. To address this problem, we propose an effectively finite-tailed updating (FTU) strategy to generate the appearance template of the object in the current frame by exploiting its local temporal context in videos. To be specific, we model the appearance template for the object in the current frame on the appearance templates of the objects in multiple earlier frames and dynamically combine them to obtain a more effective representation. Extensive experiments have been conducted, and the experimental results show that our tracker outperforms the state-of-the-art methods on MOT Challenge Benchmark. We have achieved 73.7% and 73.0% IDF1, and 46.1% and 45.0% MT on the MOT16 and MOT17 datasets, which are 0.9% and 0.7% IDFI higher, and 1.4% and 1.8% MT higher than FairMOT repsectively.
Lean construction is an improvement on the traditional mode of construction of the project, to its use in the construction industry and project management in the study on lean thought construction management mode and implementation method based on lean thinking; origin, proposed the application of lean management in the construction industry on the basis of theory of lean production, through the analysis of the core of lean lean method based on construction management mode, the implementation of lean thinking based on the lean construction, is to realize the objective of improving the management level of the construction industry as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.