In an electrocatalytic process, the cognition of the active phase in a catalyst has been regarded as one of the most vital issues, which not only boosts the fundamental understanding of the reaction procedure but also guides the engineering and design for further promising catalysts. Here, based on the oxygen evolution reaction (OER), the stepwise evolution of the dominant active phase is demonstrated in the LaNiO3 (LNO) catalyst once the single‐crystal thin film is decorated by LNO nanoparticles. It is found that the OER performance can be dramatically improved by this decoration, and the catalytic current density at 1.65 V can be enhanced by ≈1000% via ≈109 cm−2 nanoparticle adhesion after extracting the contribution of surface enlargement. Most importantly, a transition of the active phase from LNO to NiOOH via surface reconstruction with the density of LNO nanoparticles is demonstrated. Several mechanisms in terms of this active phase transition are discussed involving lattice orientation‐induced change of the surface energy profile, the lattice oxygen participation, and the A/B‐site ions leaching during OER cycles. This study suggests that the active phases in transition metal‐based OER catalysts can transform with morphology, which should be corresponding to distinct engineering strategies.
Two-dimensional (2D) Weyl semi-half-metal (WSHM) has attracted tremendous interest for its fascinating properties combing half-metallic ferromagnetism and Weyl fermions. In this work, we present a NiCS3 monolayer as a new...
It is essential to find a kind of electrocatalyst for hydrogen evolution reduction (HER) comparable with noble metal, which has good conductivity and abundant active sites. Based on systematic searches...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.