Engineered wound dressing materials with excellent injectability, self-healing ability, tissue-adhesiveness, especially the ones possessing potential therapeutic effects have great practical significance in healthcare. Herein, an injectable quaternary ammonium chitosan (QCS)/tannic acid (TA) hydrogel based on QCS and TA was designed and fabricated by facile mixing of the two ingredients under physiological conditions. In this system, hydrogels were mainly cross-linked by dynamic ionic bonds and hydrogen bonds between QCS and TA, which endows the hydrogel with excellent injectable, self-healing, and adhesive properties. Benefitting from the inherent antioxidative, antibacterial, and hemostatic abilities of TA and QCS, this hydrogel showed superior reactive oxygen species scavenging activity, broad-spectrum antibacterial ability, as well as rapid hemostatic capability. Moreover, the QCS/TA2.5 hydrogel (containing 2.5% TA) exhibited excellent biocompatibility. The in vivo experiments also showed that QCS/TA2.5 hydrogel dressing not only rapidly stopped the bleeding of arterial and deep incompressible wounds in mouse tail amputation, femoral artery hemorrhage, and liver incision models but also significantly accelerated wound healing in a full-thickness skin wound model. For the great potentials listed above, this multifunctional QCS/TA2.5 hydrogel offers a promising network as a dressing material for both rapid hemostasis and skin wound repair.
Fossilized organic remains are important sources of information because they provide a unique form of biological and evolutionary information, and have the long-term potential for genomic explorations. Here we report evidence of protein preservation in a terrestrial vertebrate found inside the vascular canals of a rib of a 195-million-year-old sauropodomorph dinosaur, where blood vessels and nerves would normally have been present in the living organism. The in situ synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectra exhibit the characteristic infrared absorption bands for amide A and B, amide I, II and III of collagen. Aggregated haematite particles (α-Fe2O3) about 6∼8 μm in diameter are also identified inside the vascular canals using confocal Raman microscopy, where the organic remains were preserved. We propose that these particles likely had a crucial role in the preservation of the proteins, and may be remnants partially contributed from haemoglobin and other iron-rich proteins from the original blood.
Tooth morphology and development can provide valuable insights into the feeding behaviour and evolution of extinct organisms. The teeth of Theropoda, the only clade of predominantly predatory dinosaurs, are characterized by ziphodonty, the presence of serrations (denticles) on their cutting edges. Known today only in varanid lizards, ziphodonty is much more pervasive in the fossil record. Here we present the first model for the development of ziphodont teeth in theropods through histological, SEM, and SR-FTIR analyses, revealing that structures previously hypothesized to prevent tooth breakage instead first evolved to shape and maintain the characteristic denticles through the life of the tooth. We show that this novel complex of dental morphology and tissues characterizes Theropoda, with the exception of species with modified feeding behaviours, suggesting that these characters are important for facilitating the hypercarnivorous diet of most theropods. This adaptation may have played an important role in the initial radiation and subsequent success of theropods as terrestrial apex predators.
A D-type fiber biosensor based on surface-plasmon resonance (SPR) technology and heterodyne interferometry is presented. The sensing device is a single-mode optical fiber in which half the core is polished away and a thin-film layer of gold is deposited. We measure the phase-difference variations instead of the light intensity as in traditional SPR techniques. Therefore the accuracy and resolution of our method are very high. Its sensitivity can reach 2 x 10(-6) refractive-index units. The sensor has some merits, e.g., tunable high sensitivity, small size, lower cost, smaller sample volume, and suitability for in vivo testing. This novel method of a D-type fiber biosensor based on SPR technology and heterodyne interferometry is valuable for chemical, biological, and biochemical sensing, and the novel method of D-type fiber biosensing is a feasible means of study.
Multifunctional hydrogel as a sealant or wound dressing with high adhesiveness and excellent antibacterial activity is highly desirable in clinical applications. In this contribution, one-step synthetic hydrogel based on quaternized chitosan (QCS), tannic acid (TA), and ferric iron (Fe(III)) is developed for skin incision closure and Staphylococcus aureus (S. aureus)-infected wound healing. In this hydrogel system, the ionic bonds and hydrogen bonds between QCS and TA form the main backbone of hydrogel, the metal coordination bonds between TA and Fe(III) (catechol-Fe) endow hydrogel with excellent adhesiveness and (near-infrared light) NIR-responsive photothermal property, and these multiple dynamic physical crosslinks enable QCS/TA/Fe hydrogel with flexible self-healing ability and injectability. Moreover, QCS/TA/Fe hydrogel possesses superior antioxidant, anti-inflammatory, hemostasis, and biocompatibility. Also, it is safe for vital organs. The data from the mouse skin incision model and infected full-thickness skin wound model presented the high wound closure effectiveness and acceleration of the wound healing process by this multifunctional hydrogel, highlighting its great potential in wound management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.