Society is more and more interested in developing mathematical models to assess and forecast the environmental and biological health conditions of our planet. However, most existing models cannot determine the long-range impacts of potential policies without considering the complex global factors and their cross effects in biological systems. In this paper, the Markov property and Neural Network Ensemble (NNE) are utilized to construct an estimated matrix that combines the interaction of the different local factors. With such an estimation matrix, we could obtain estimated variables that could reflect the global influence. The ensemble weights are trained by multiple population algorithms. Our prediction could fit the real trend of the two predicted measures, namely Morbidity Rate and Gross Domestic Product (GDP). It could be an effective method of reflecting the relationship between input factors and predicted measures of the health of ecosystems. The method can perform a sensitivity analysis, which could help determine the critical factors that could be adjusted to move the ecosystem in a sustainable direction.
The COVID-19 pandemic situation has created even more difficulties in the quick identification and screening of the COVID-19 patients for the medical specialists. Therefore, a significant study is necessary for detecting COVID-19 cases using an automated diagnosis method, which can aid in controlling the spreading of the virus. In this paper, the study suggests a Deep Convolutional Neural Network-based multi-classification approach (COV-MCNet) using eight different pre-trained architectures such as VGG16, VGG19, ResNet50V2, DenseNet201, InceptionV3, MobileNet, InceptionResNetV2, Xception which are trained and tested on the X-ray images of COVID-19, Normal, Viral Pneumonia, and Bacterial Pneumonia. The results from 3-class (Normal vs. COVID-19 vs. Viral Pneumonia) showed that only the ResNet50V2 model provides the highest classification performance (accuracy: 95.83%, precision: 96.12%, recall: 96.11%, F1-score: 96.11%, specificity: 97.84%) compared to rest of the models. The results from 4-class (Normal vs. COVID-19 vs. Viral Pneumonia vs. Bacterial Pneumonia) demonstrated that the pre-trained model DenseNet201 provides the highest classification performance (accuracy: 92.54%, precision: 93.05%, recall: 92.81%, F1-score: 92.83%, specificity: 97.47%). Notably, the ResNet50V2 (3-class) and DenseNet201 (4-class) models in the proposed COV-MCNet framework showed higher accuracy compared to the rest six models. This indicates that the designed system can produce promising results to detect the COVID-19 cases on the availability of more data. The proposed multi-classification network (COV-MCNet) significantly speeds up the existing radiology-based method, which will be helpful to the medical community and clinical specialists for early diagnosis of the COVID-19 cases during this pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.