A study was carried out to understand the effect of precyclic loading on stress-corrosion-crack initiation in an X-65 pipeline steel exposed to a near-neutral-pH soil environment. The test specimens were precyclically loaded before corrosion exposure to represent a service history of up to about 20 years, depending on the severity of pressure fluctuation. Microcracks had initiated on the polished surface of the X-65 pipeline steel after long-time exposure at open-circuit potential (OCP) in a near-neutral-pH synthetic soil solution. These microcracks were mostly initiated from pits at metallurgical discontinuities such as grain boundaries, pearlitic colonies, and banded phases in the steel. Strong preferential dissolution was observed along planes of the banded structures in the steel. The selective corrosion attack at these metallurgical discontinuities is attributed to the galvanic nature of those areas to their neighbors. Cyclic loading prior to corrosion exposure had significant effects on microcrack initiation and propagation during subsequent corrosion exposure. Cyclic loading prior to corrosion exposure either reduced or increased the probability of crack initiation and the rate of crack propagation, depending upon the magnitude of the stress cycles. The largest reduction was seen at a peak cyclic stress of about 0.8 of the yield strength. This cyclic-loadingdependent cracking behavior might be related to the alteration of the substructures and the residual stress in the steel as a result of precyclic loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.