The present study utilizes an acrylic (PMMA) plate with circular piezoelectric ceramics (PC) as an actuator to design and investigate five different types of piezo actuation jets (PAJs) with operating conditions. The results show that the heat transfer coefficient of a device of PAJ is 200% greater than that of a traditional rotary fan when PAJ is placed at the proper distance of 10 to 20 mm from the heat source, avoiding the suck back of surrounding fluids. The cooling effect of these five PAJs was calculated by employing the thermal analysis method and the convection thermal resistance of the optimal PAJ can be reduced by about 36%, while the voltage frequency, wind speed, and noise were all positively correlated. When the supplied piezoelectric frequency is 300 Hz, the decibel level of the noise is similar to that of a commercial rotary fan. The piezoelectric sheets had one of two diameters of 31 mm or 41 mm depending on the size of the tested PAJs. The power consumption of a single PAJ was less than 10% of that of a rotary fan. Among the five types of PAJ, the optimal one has the characteristics that the diameter of the piezoelectric sheet is 41 mm, the piezoelectric spacing is 2 mm, and the length of the opening is 4 mm. Furthermore, the optimal operating conditions are a voltage frequency of 300 Hz and a placement distance of 20 mm in the present study.
A thermoelectric pipe (TEP) is constructed by tubular graphite electrodes, Teflon material, and stainless-steel tube containing polymeric nanofluids as electrolytes in this study. Heat dissipation and power generation (generating capacity) are both fulfilled with temperature difference via the thermal-electrochemistry and redox reaction effects of polymeric nanofluids. The notion of TEP is to recover the dissipative heat from the heat capacity generated by the relevant machine systems. The thermal conductivity and power density empirical formulas of the novel TEP were derived through the intelligent dimensional analysis with thermoelectric experiments and evaluated at temperatures between 25 and 100 °C and vacuum pressures between 400 and 760 torr. The results revealed that the polymeric nanofluids composed of titanium dioxide (TiO2) nanoparticles with 0.2 wt.% sodium hydroxide (NaOH) of the novel TEP have the best thermoelectric performance among these electrolytes, including TiO2 nanofluid, TiO2 nanofluid with 0.2 wt.% NaOH, deionized water, and seawater. Furthermore, the thermal conductivity and power density of the novel TEP are 203.1 W/(m·K) and 21.16 W/m3, respectively.
Lowering the interface charge transfer, ohmic and diffusion impedances are the main considerations to achieve an intermediate temperature solid oxide fuel cell (ITSOFC). Those are determined by the electrode materials selection and manipulating the microstructures of electrodes. The composite electrodes are utilized by a variety of mixed and impregnation or infiltration methods to develop an efficient electrocatalytic anode and cathode. The progress of our proposed core-shell structure pre-formed during the preparation of electrode particles compared with functional layer and repeated impregnation by capillary action. The core-shell process possibly prevented the electrocatalysis decrease, hindering and even blocking the fuel gas path through the porous electrode structure due to the serious agglomeration of impregnated particles. A small amount of shell nanoparticles can form a continuous charge transport pathway and increase the electronic and ionic conductivity of the electrode. The triple-phase boundaries (TPBs) area and electrode electrocatalytic activity are then improved. The core-shell anode SLTN-LSBC and cathode BSF-LC configuration of the present report effectively improve the thermal stability by avoiding further sintering and thermomechanical stress due to the thermal expansion coefficient matching with the electrolyte. Only the half-cell consisting of 2.75 μm thickness thin electrolyte iLSBC with pseudo-core-shell anode LST could provide a peak power of 325 mW/cm2 at 700 °C, which is comparable to other reference full cells’ performance at 650 °C. Then, the core-shell electrodes preparation by simple chelating solution and cost-effective one process has a potential enhancement of full cell electrochemical performance. Additionally, it is expected to apply for double ions (H+ and O2−) conducting cells at low temperature.
This paper adopted transient CFD (Computational Fluid Dynamics) simulation analysis with an experimental method for designing and surveying the quick and uniform rise in the temperature of the plastics into the insert mold cavity. Plastic injection molding utilizing VCRHCS (Vapor Chamber for Rapid Heating and Cooling System) favorably decreased the defects of crystalline plastic goods’ welding lines, enhancing the tensile intensity and lowering the weakness of welding lines of a plastic matter. The vapor chamber (VC) possessed a rapid uniform temperature identity, which was embedded between the heating unit and the mold cavity. The results show that the tensile strength of the plastic specimen increased above 8%, and the depths of the welding line (V-gap) decreased by 24 times (from 12 μm to 0.5 μm). The VCRHCS plastic injection molding procedure can constructively diminish the development time for novel related products, as described in this paper.
There are five closed types of piezo actuators (closed type of PA, closed PA) as a cooling fan relative to those different PAJs of the previous work (open type of PAJ, open PAJ) for analysis in the present study. Closed PA was composed of circular piezoelectric ceramics (PCs) and acrylic (PMMA) plates and investigated on five different types at operating conditions. The results show that the noise of the closed PA is quieter than that of the open PAJ by about 10 dB. When the closed PA is deposed at a suitable distance of 10 to 20 mm from the heat source, averting sucking back the high-temperature fluids around that, the thermal convection coefficient is above 120% more than that of the conventional rotary fan. The cooling performances of these five closed PAs were evaluated by thermal analysis technique, and the convection thermal resistance of the best closed PA can be decreased by over 15%. In terms of energy consumption, a monolithic closed PA was less than 10% than that of a rotary fan. Among these five closed PAs, the best one has the essential qualities that the diameter of the piezoelectric sheet is 41 mm, the opening length is 4 mm, and the outer opening length is 10 mm. Moreover, the best operating conditions are a voltage frequency of 300 Hz and a release distance of 15 mm in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.