Background: Constipation is one of the most prevalent chronic gastrointestinal diseases. Notably, previous studies have demonstrated that Chinese herbal compounds may exert effects on constipation. The present study aimed to predict the mechanisms underlying the effects of Zhi Zhu Ma Ren Pill (ZZMRP), which includes Aurantii Fructus Immaturus, Atractylodis Macrocephalae Rhizoma, Fructus Cannabis, Paeonia lactiflora and Radix Asteris in the treatment of constipation, using network pharmacology and molecular docking. Methods: The components and target information of ZZMRP were accessed using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform, and the associated targets of constipation were obtained from the GeneCards, Disgenet, Online Mendelian Inheritance in Man, DrugBANK and Therapeutic Target Database databases. The major targets were subsequently selected using a Venn diagram and network topology analysis, which was followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Molecular docking was performed to authenticate the binding activity between active components and core targets. Results: A total of 44 active components, 249 targets of ZZMRP and 1501 targets associated with constipation were acquired. A total of 122 intersection targets were discovered between ZZMRP and constipation. Subsequently, 18 key targets were authenticated, including tumor protein 53, RACalpha serine/threonine-protein kinase, JUN and caspase-3. GO and KEGG pathway enrichment analysis indicated that mitogenactivated protein kinase, tumor necrosis factor, and phosphoinositide 3-kinase/protein kinase B signaling pathways may be involved in the treatment of constipation using ZZMRP. Molecular docking suggested that quercetin, kaempferol, and luteolin exhibited high binding affinities with several of the primary targets. Conclusions: The active components, core targets, and signaling pathways of ZZMRP in the treatment of constipation were predicted, which may be applicable to the development of treatments for constipation and application of ZZMRP.
Context Slow transit constipation (STC), the most common type of constipation, seriously affects the life of patients. Zhizhu decoction (ZZD), a traditional Chinese medicine compound, has is effective against functional constipation, but the mechanism is still unclear. Objective This research explores the mechanism of ZZD on STC from the perspective of metabolomics and gut microbiota. Materials and methods Fifty-four C57BL/6 mice were randomly divided into six groups ( n = 9): control (control); STC (model); positive control (positive); low-dose (5 g/kg; L-ZZD), medium-dose (10 g/kg; M-ZZD), and high-dose (20 g/kg; H-ZZD) ZZD treatment. Following treatment of mice with ZZD for two weeks, the changes in intestinal motility, colon histology, intestinal neurotransmitters, and aryl hydrocarbon receptor (AHR) pathway determined the effects of ZZD on the pathophysiology of STC. LC-MS targeting serum metabolomics was used to analyze the regulation of ZZD on neurotransmitters, and 16S rRNA high-throughput sequencing was used to detect the regulation of the gut microbiome. Results ZZD had the highest content of naringin (6348.1 mg/L), and could significantly increase the 24 h defecations (1.10- to 1.42-fold), fecal moisture (1.14-fold) and intestinal transport rate (1.28-fold) of STC mice, increased the thickness of the mucosal and muscular tissue (1.18- to 2.16-fold) and regulated the neurotransmitters in the colon of STC mice. Moreover, ZZD significantly activated the AHR signaling pathway, and also affected the composition of gut microbiota in STC mice. Discussion and conclusions The beneficial effect and the possible mechanism of ZZD on STC could provide a theoretical basis for the broader clinical application of ZZD.
Background/Aims: We aimed to investigate the role and working mechanism of Homo sapiens circular RNA_0003602 (hsa_circ_0003602) in colorectal cancer (CRC) development. Methods:The expression of circ_0003602, miR-149-5p, and solute carrier family 38 member 1 (SLC38A1) was detected by quantitative real-time polymerase chain reaction. RNase R assays were conducted to determine the characteristics of circ_0003602. CCK-8 assays, flow cytometry analysis, transwell invasion assays, wound healing assays and tube formation assays were employed to evaluate cell viability, apoptosis, invasion, migration, and angiogenesis. All protein levels were examined by Western blot or immunohistochemistry assay. The glutamine metabolism was monitored by corresponding glutamine, α-ketoglutarate and glutamate assay kits. Dualluciferase reporter assay was utilized to confirm the targeted combination between miR-149-5p and circ_0003602 or SLC38A1. A xenograft tumor model was established to analyze the role of circ_0003602 in CRC tumor growth in vivo.Results: Circ_0003602 was upregulated in CRC tissues and cell lines. Circ_0003602 silencing suppressed CRC cell viability, migration, invasion, angiogenesis, and glutaminolysis; induced cell apoptosis in vitro; and blocked tumor growth in vivo. Moreover, circ_0003602 directly interacted with miR-149-5p to negatively regulate its expression, and circ_0003602 knockdown suppressed the malignant behaviors of CRC cells largely by upregulating miR-149-5p. MiR-149-5p directly bound to the 3' untranslated region of SLC38A1 to induce its degradation, and miR-149-5p overexpression reduced the malignant potential of CRC cells largely by downregulating SLC38A1. Circ_0003602 positively regulated SLC38A1 expression by sponging miR-149-5p in CRC cells.Conclusions: Circ_0003602 knockdown impedes CRC development by targeting the miR-149-5p/SLC38A1 axis, which provides a novel theoretical basis and new insights for CRC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.