The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. CCL2 can activate tumour cell growth and proliferation through a variety of mechanisms. By interacting with CCR2, CCL2 promotes cancer cell migration and recruits immunosuppressive cells to the tumour microenvironment, favouring cancer development. Over the last several decades, a series of studies have been conducted to explore the CCL2‐CCR2 signalling axis function in malignancies. Therapeutic strategies targeting the CCL2‐ CCR2 axis have also shown promising effects, enriching our approaches for fighting against cancer. In this review, we summarize the role of the CCL2‐CCR2 signalling axis in tumorigenesis and highlight recent studies on CCL2‐CCR2 targeted therapy, focusing on preclinical studies and clinical trials.
Space charge formation in polymeric materials can cause some serious concern in real operation, because it has significant influence on the performance of polymers. For example, space charge in some insulating materials can severely distort the electric field, even lead to materials degradation. On the contrary, in the case of its applications, space charge stored in electrets can greatly improve their properties. It is therefore important to understand trapped charge distribution in materials as it is considered to be a novel indicator for effective evaluation of aging status and electric withstanding strength of insulating materials. In this paper, a model based on isothermal surface potential decay (ISPD) is proposed to study the distribution of trapped charges by considering the physical mechanism of the detrapping process. By measuring the ISPD characteristics of polymeric materials and fitting the data according to the assumption of shallow and deep traps, the distribution of trapped charges is obtained, which may be related to the change of aggregation structure of polymers. In order to verify the model, it is used to analyze different ISPD decay curves of polypropylene (PP) and low density polyethylene (LDPE), as well as the ISPD data of PP electrets with/without pressure expanding treatment. The results show that the proposed ISPD model is effective and convenient. Two peaks are observed on the curve of the trapped charge density versus the trap level. The obtained distribution of the trapped charges in polymers can reveal the different nature of electron/hole traps and the different transportation behavior of hole/electron carriers, i.e., the electron-type traps show an inter-chain character while the character of hole-type traps is intra-chain. In addition, the distribution of trapped charge is further related to aggregation structure of PP and LDPE, as well as PP electrets with/without pressure expanding treatment.Index Terms -Space charge, isothermal surface potential decay (ISPD), trapped charge density, aggregation structure.
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Electrical stimulation (ES) has been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. However, the effect of ES on peripheral remyelination after nerve damage has been investigated less well, and the mechanism underlying its action remains unclear. In the present study, the crush-injured sciatic nerves in rats were subjected to 1 hr of continuous ES (20 Hz, 100 microsec, 3 V). Electron microscopy and nerve morphometry were performed to investigate the extent of regenerated nerve myelination. The expression profiles of P0, Par-3, and brain-derived neurotrophic factor (BDNF) in the injuried sciatic nerves and in the dorsal root ganglion neuron/Schwann cell cocultures were examined by Western blotting. Par-3 localization in the sciatic nerves was determined by immunohistochemistry to demonstrate Schwann cell polarization during myelination. We reported that 20-Hz ES increased the number of myelinated fibers and the thickness myelin sheath at 4 and 8 weeks postinjury. P0 level in the ES-treated groups, both in vitro and in vivo, was enhanced compared with the controls. The earlier peak of Par-3 in the ES-treated groups indicated an earlier initiation of Schwann cell myelination. Additionally, ES significantly elevated BDNF expression in nerve tissues and in cocultures. ES on the site of nerve injury potentiates axonal regrowth and myelin maturation during peripheral nerve regeneration. Furthermore, the therapeutic actions of ES on myelination are mediated via enhanced BDNF signals, which drive the promyelination effect on Schwann cells at the onset of myelination.
Podoplanin is highly expressed in human cancers. However, mechanisms regulating podoplanin expression remain elusive. Here we show that podoplanin promotes tumorigenesis of oral squamous cell carcinoma (OSCC) and precancerous cells both in vitro and in vivo, and the ErbB3-binding protein-1 (Ebp1) can be activated in oral tumorigenesis and can serve as a transcriptional activator to drive podoplanin expression in the malignant progression. Most of the OSCC cell lines have no detectable podoplanin protein in low-density cultures. However, the protein becomes detectable in high-density cultures and is required for in-vivo tumor formation of OSCC and oral premalignancies. In a high-density culture condition, podoplanin expression can be triggered at both mRNA and protein levels. In this condition, we showed that Ebp1 is upregulated, translocated from the cytoplasm to the nucleus and binds to the podoplanin promoter to result in a dramatic increase of podoplanin mRNA and protein. Ebp1 downregulation significantly reduced podoplanin expression levels in OSCC cells with a decreased anchorage-dependent growth, invasion and wound healing. Conversely, Ebp1 overexpression enhanced these malignant features through podoplanin upregulation both in vitro and in vivo. In 81 patients with oral premalignant lesions, we found that Ebp1 expression is strongly related to OSCC development. We conclude that Ebp1 has a key role in the upregulation of podoplanin and may contribute to oral tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.