Chronic lead (Pb) exposure causes cognitive deficits. This study aimed to explore the neuroprotective effect and mechanism of β-asarone, an active component from Chinese Herbs Acorus tatarinowii Schott, to alleviate impairments of spatial memory and synaptogenesis in Pb-exposed rats. Both Sprague-Dawley developmental rat pups and adult rats were used in the study. Developmental rat pups were exposed to Pb throughout the lactation period and β-asarone (10, 40mg kg-1, respectively) was given intraperitoneally from postnatal day 14 to 21. Also, the adult rats were exposed to Pb from embryo stage to 11 weeks old and β-asarone (2.5, 10, 40mg kg-1, respectively) was given from 9 to 11 weeks old. The level of β-asarone in brain tissue was measured by High Performance Liquid Chromatography. The Morris water maze test and Golgi-Cox staining method were used to assess spatial memory ability and synaptogenesis. The protein expression of NR2B subunit of NMDA receptor, Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and Wnt family member 7A (Wnt7a) in hippocampus, as well as mRNA expression of Arc/Arg3.1 and Wnt7a, was also explored. We found that β-asarone could pass through the blood brain barrier quickly. And β-asarone effectively attenuated Pb-induced reduction of spine density in hippocampal CA1 and dentate gyrus areas in a dose-dependent manner both in developmental and adult rats, meanwhile the Pb-induced impairments of learning and memory were partially rescued. In addition, β-asarone effectively up-regulated the protein expression of NR2B, Arc and Wnt7a, as well as the mRNA levels of Arc/Arg3.1 and Wnt7a, which had been suppressed by Pb exposure. The results suggest the neuroprotective properties of β-asarone against Pb-induced memory impairments, and the effect is possibly through the regulation of synaptogenesis, which is mediated via Arc/Arg3.1 and Wnt pathway.
Lead (Pb) exposure, in particular during early postnatal life, increases susceptibility to cognitive dysfunction and neurodegenerative outcomes. The detrimental effect of Pb exposure is basically due to an increasing ROS production which overcomes the antioxidant systems and finally leads to cognitive dysfunction. Kiwifruit is rich in the antioxidants like vitamin C and polyphenols. This study aims to investigate the effects and mechanism of kiwifruit to alleviate learning and memory deficits induced by Pb exposure. Sprague-Dawley (SD) rat pups acquired Pb indirectly through their mothers during lactation period and after postnatal day 21 (PND21) directly acquired Pb by themselves. Five kinds of kiwifruits were collected in this study and the amounts of vitamin C and polyphenols in them were measured and the antioxidation effects were determined. Among them, Qinmei kiwifruit (Qm) showed the strongest antioxidation effects in vitro. In vivo, Qm significantly repaired Pb-induced learning and memory deficits and dendritic spine loss. In addition, Pb compromised the enzymatic activity and transcriptional levels of SOD and GSH-Px and decreased the microglial activation, which, to some extent, could be reversed by Qm kiwifruit administration. The results suggest that kiwifruit could alleviate Pb-induced cognitive deficits possibly through antioxidative stress and microglia inactivation. Consequently, kiwifruit could be potentially regarded as the functional food favorable in the prevention and treatment of Pb intoxication.
Homeostatic synaptic plasticity (HSP) helps to stabilize the neuronal network activity, which is essential for optimal information coding. Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to activity blockade. Lead (Pb) is a ubiquitous environmental neuro-toxicant and can impair the input-specific Hebbian type synaptic plasticity, but whether Pb exerts effects in HSP remains unknown. We previously reported that blocking L-type calcium channel induces synaptic scaling, which stimulates the synthesis of all-trans retinoic acid (RA) and the expression of GluA2-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Given Pb is a potent blocker of calcium channel, we hypothesized Pb may participate in synaptic scaling accompanied by RA synthesis and AMPA receptor trafficking. In this study, cultured hippocampal neurons were treated with Pb (1 μM 5 min, 15 min, 4 h, 24 h, and 10 μM 24 h) alone or in combination with tetrodotoxin (TTX, 1 μM, 24 h). The results showed that Pb alone, either at 1 μM or 10 μM, cannot induce synaptic scaling. But Pb participated in synaptic scaling when concurrent with TTX (10 μM Pb + 1 μM TTX, 24 h). Further results showed that surface heteromeric GluA1 and GluA2 AMPA receptors were increased in TTX+ Pb-induced synaptic scaling. In addition, RA was proved not to participate in TTX+ Pb-mediated synaptic scaling. Taken together, our work supported that TTX+ Pb could induce synaptic scaling and enhance synaptic accumulation of AMPAR GluA1 and GluA2 during synaptic up scaling. Our study would help for elucidation of the Pb-induced neuronal network instability mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.