Aspect terms extraction and opinion terms extraction are two key problems of fine-grained Aspect Based Sentiment Analysis (ABSA). The aspect-opinion pairs can provide a global profile about a product or service for consumers and opinion mining systems. However, traditional methods can not directly output aspect-opinion pairs without given aspect terms or opinion terms. Although some recent co-extraction methods have been proposed to extract both terms jointly, they fail to extract them as pairs. To this end, this paper proposes an end-to-end method to solve the task of Pair-wise Aspect and Opinion Terms Extraction (PAOTE). Furthermore, this paper treats the problem from a perspective of joint term and relation extraction rather than under the sequence tagging formulation performed in most prior works. We propose a multi-task learning framework based on shared spans, where the terms are extracted under the supervision of span boundaries. Meanwhile, the pair-wise relations are jointly identified using the span representations. Extensive experiments show that our model consistently outperforms stateof-the-art methods.
IGCTs should be strictly classified according to their pathological categories before administering pathology-specific treatments. Although open microsurgical excision is the traditional surgical strategy for IGCTs, recent publications also support the role of endoscopic surgical options for pineal region IGCTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.