Oral squamous cell carcinoma (OSCC) is one of the most aggressive and lethal malignancies affecting the head and neck region with a general 5-year survival rate about 50%. Long non-coding RNAs (lncRNAs) are believed to participate in diverse biological processes and are emerging as convenient and minimally invasive diagnostic/prognostic/therapeutic markers. The aim of this study was to explore CEBPA-AS1 role and mechanism in OSCC tumorigenesis. In this study, CEBPA-AS1 localized in the cytoplasm and the peri-nuclear cellular compartment functioning as a potential oncogene up-regulated in OSCC was correlated with poor differentiation, lymph node metastasis and high clinical stage, which made it considered to be a prognostic biomarker. Silence of CEBPA-AS1 inhibited OSCC cells proliferation and induced cells apoptosis, migration and invasion by targeting CEBPA and via a novel pathway CEBPA/Bcl2. Our findings provided the first evidence for the lncRNA CEBPA-AS1 regulatory network in OSCC tumorigenesis, which might be helpful to improve the effects of clinical treatment in OSCC.
Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer (Bray et al., 2018). Rates of OSCC are steadily rising worldwide, with over 274,000 diagnoses per year accounting for 80-90% of primary oral tumors (Krishna Rao et al., 2013). OSCC tumors typically exhibit a poor prognosis associated with aggressive growth and high rates of recurrence and local metastasis. Standard treatments for OSCC include surgical tumor removal followed by radiotherapy and adjuvant platinum-based chemotherapy (Gharat et al., 2016;Huang & O'Sullivan, 2017). Although such chemotherapeutic drugs can easily eliminate rapidly dividing tumor cells, they fail to efficiently kill slowly dividing cells, particularly at lower doses aimed to minimize off-target toxicity in normal or non-transformed cells. The remaining cells, which may exhibit only a partial response to utilized chemotherapeutic drugs, ultimately contribute to the
BackgroundUrothelial bladder cancer (UBC) is one of the most lethal urological malignancies in the world. Patients with UBC are routinely given chemotherapy which results in a median survival of 12-15 months. Nuclear-enriched abundant transcript 1 (NEAT1) functions as an oncogene and could be used as a therapeutic target for human UBC. However, the involvement of NEAT1 in doxorubicin (DOX) resistance of UBC has been poorly demonstrated.MethodsQuantitative Real-time PCR (qRT-PCR) was used to detect the expression levels of NEAT1 and miR-214-3p in UBC tissues and cells. Bioinformatics prediction, RNA pull-down and qRT-PCR were used to assay the regulation manner of NEAT1 and miR-214-3p. Loss/gain function of NEAT1 and miR-214-3p together with western blot, drug resistance assay and flow cytometry were used to explore the influence of NEAT1 in DOX resistance was correlative with miR-214-3p. Finally, luciferase assay system was applied to determine the Wnt/β-catenin signal activity.ResultsNEAT1 was upregulated and miR-214-3p was downregulated in DOX-resistant UBC tissues and cells. NEAT1 knockdown inhibited J82 and T24 cells to DOX chemosensitivity by negatively regulating miR-214-3p expression. NEAT1/miR-214-3p contributed to DOX resistance of UBC preliminary through the Wnt/β-catenin pathway.ConclusionNEAT1 contributed to DOX resistance of UBC through the Wnt/β-catenin pathway partly by negatively regulating miR-214-3p expression. Our findings will provide a promising ncRNA targeted therapeutic strategy for UBC with DOX resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.