Background Differentiating between solitary spinal metastasis (SSM) and solitary primary spinal tumor (SPST) is essential for treatment decisions and prognosis. The aim of this study was to develop and validate an MRI-based radiomics nomogram for discriminating SSM from SPST. Methods One hundred and thirty-five patients with solitary spinal tumors were retrospectively studied and the data set was divided into two groups: a training set (n = 98) and a validation set (n = 37). Demographics and MRI characteristic features were evaluated to build a clinical factors model. Radiomics features were extracted from sagittal T1-weighted and fat-saturated T2-weighted images, and a radiomics signature model was constructed. A radiomics nomogram was established by combining radiomics features and significant clinical factors. The diagnostic performance of the three models was evaluated using receiver operator characteristic (ROC) curves on the training and validation sets. The Hosmer–Lemeshow test was performed to assess the calibration capability of radiomics nomogram, and we used decision curve analysis (DCA) to estimate the clinical usefulness. Results The age, signal, and boundaries were used to construct the clinical factors model. Twenty-six features from MR images were used to build the radiomics signature. The radiomics nomogram achieved good performance for differentiating SSM from SPST with an area under the curve (AUC) of 0.980 in the training set and an AUC of 0.924 in the validation set. The Hosmer–Lemeshow test and decision curve analysis demonstrated the radiomics nomogram outperformed the clinical factors model. Conclusions A radiomics nomogram as a noninvasive diagnostic method, which combines radiomics features and clinical factors, is helpful in distinguishing between SSM and SPST.
Background: Pneumonia-like primary pulmonary lymphoma (PPL) was commonly misdiagnosed as infectious pneumonia, leading to delayed treatment. The purpose of this study was to establish a computed tomography (CT)-based radiomics model to differentiate pneumonia-like PPL from infectious pneumonia. Methods: In this retrospective study, 79 patients with pneumonia-like PPL and 176 patients with infectious pneumonia from 12 medical centers were enrolled. Patients from center 1 to center 7 were assigned to the training or validation cohort, and the remaining patients from other centers were used as the external test cohort. Radiomics features were extracted from CT images. A three-step procedure was applied for radiomics feature selection and radiomics signature building, including the inter-and intra-class correlation coefficients (ICCs), a one-way analysis of variance (ANOVA), and least absolute shrinkage and selection operator (LASSO). Univariate and multivariate analyses were used to identify the significant clinicoradiological variables and construct a clinical factor model. Two radiologists reviewed the CT images for the external test set. Performance of the radiomics model, clinical factor model, and each radiologist were assessed by receiver operating characteristic, and area under the curve (AUC) was compared. Results: A total of 144 patients (44 with pneumonia-like PPL and 100 infectious pneumonia) were in the training cohort, 38 patients (12 with pneumonia-like PPL and 26 infectious pneumonia) were in the validation cohort, and 73 patients (23 with pneumonia-like PPL and 50 infectious pneumonia) were in the external test cohort. Twenty-three radiomics features were selected to build the radiomics model, which yielded AUCs of 0.95 (95% confidence interval [CI]: 0.94 -0.99), 0.93 (95% CI: 0.85 -0.98), and 0.94 (95% CI: 0.87-0.99) in the training, validation, and external test cohort, respectively. The AUCs for the two readers and clinical factor model were 0.74 (95% CI: 0.63-0.83), 0.72 (95% CI: 0.62-0.82), and 0.73 (95% CI: 0.62-0.84) in the external test cohort, respectively. The radiomics model outperformed both the readers' interpretation and clinical factor model (P <0.05). Conclusions:The CT-based radiomics model may provide an effective and non-invasive tool to differentiate pneumonia-like PPL from infectious pneumonia, which might provide assistance for clinicians in tailoring precise therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.