The serious zinc dendrites and poor cyclability at high cathode loading owing to the strong solvation effect of traditional aqueous electrolytes are the main bottlenecks to the development of aqueous rechargeable zinc-ion batteries (ARZIBs). Here, we design an ether−water hybrid zinc-ion electrolyte with bifunctional roles of not only unplugging the dendrites bottleneck at the Zn anode but also extending the cycle life at high cathode loading. A cyclic ether (1,4-dioxane (DX)) is incorporated into traditional ZnSO 4 -based electrolytes to finely tune the solvation sheath of Zn 2+ . DX is found to guide the deposition orientation of zinc along the (002) plane, leading to not a dendritic structure but distinctively dense lamellar deposition due to the stronger affinity of the cyclic DX molecules toward Zn(002) than that of water, which is proven by density functional theory calculations. The cycling lifespan of the Zn anode extends up to over 600 h at 5.0 mA cm −2 and maintains extremely high Coulombic efficiency of 99.8%, thereby further enabling the Zn-MnO 2 full cells to stably cycle at an ultrahigh mass loading of 9.4 mg cm −2 , paving the way to their practical applications. This work also provides a novel electrolyte regulating solution for other aqueous multivalent metal-ion batteries.
Saccharina (Laminaria) is one of the most important economic seaweeds. Previously, four genetic linkage maps of Saccharina have been constructed and five QTLs have been identified. However, they were not enough for its breeding. In this work, Saccharina longissima (♀) and Saccharina japonica (♂), which showed obvious differences in morphology and genetics, were applied in hybridization to yield the F2 mapping population with 102 individuals. Using these 102 F2 hybrids, the genetic linkage map of Saccharina was constructed by MapMaker software based on 37 amplified fragment length polymorphisms (AFLPs), 22 sequence-related amplified polymorphisms (SRAPs) and 139 simple sequence repeats (SSRs) markers. Meanwhile, QTL analysis was performed for six economic traits. The linkage map constructed in this research consisted of 422 marker loci (137 AFLPs, 57 SRAPs and 228 SSRs), which formed 45 linkage groups (LGs) with an average marker space of 7.92 cM; they spanned a total length of 2233.1 cM, covering the whole estimated genome size. A total of 29 QTLs were identified for six economic traits, which explained 1.06 to 64.00% of phenotypic variation, including three QTLs for frond length (FL) and raw weight (RW), five QTLs for frond width (FW), two QTLs for frond fascia width (FFW) and frond thickness (FT), and fourteen QTLs for base shape (BS). The results of this research will improve the breeding efficiency and be beneficial for marker-assisted selection (MAS) schemes in Saccharina breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.