TNF-α is a cytokine involved in systemic inflammation and regulation of immune cells. It is produced chiefly by activated macrophages as a membrane or secreted form. In rainbow trout, two TNF-α molecules were described previously. In this article, we report a third TNF-α (TNF-α3) that has only low identities to known trout molecules. Phylogenetic tree and synteny analyses of trout and other fish species suggest that two types (named I and II) of TNF-α exist in teleost fish. The fish type-II TNF-α has a short stalk that may impact on its enzymatic release or restrict it to a membrane-bound form. The constitutive expression of trout TNF-α3 was generally lower than the other two genes in tissues and cell lines, with the exception of the macrophage RTS-11 cell line, in which expression was higher. Expression of all three TNF-α isoforms could be modulated by crude LPS, peptidoglycan, polyinosinic:polycytidylic acid, and rIFN-γ in cell lines and primary macrophages, as well as by bacterial and viral infections. TNF-α3 is the most responsive gene at early time points post-LPS stimulation and can be highly induced by the T cell–stimulant PHA, suggesting it is a particularly important TNF-α isoform. rTNF-α3 produced in CHO cells was bioactive in different cell lines and primary macrophages. In the latter, it induced the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, IL-17C, and TNF-αs), negative regulators (SOCS1–3, TGF-β1b), antimicrobial peptides (cathelicidin-1 and hepcidin), and the macrophage growth factor IL-34, verifying its key role in the inflammatory cytokine network and macrophage biology of fish.
HighlightsThe cDNA sequences of CXCR2, CXCR3a and CXCR3b have been cloned in rainbow trout.The linked CXCR1/CXCR2 and CXCR3a/CXCR3b loci are hypothesised to have been present in the teleostomian ancestor.CXCR1 and CXCR2 have likely undergone gene conversion whilst CXCR3b has been lost in mammals.Compared with mammals, ray-finned fish possess more CXCR1–R3 receptors, but fewer ligands.Trout CXCR1–R3 are expressed in macrophages and neutrophils, with CXCR1/R2 also abundant in B-cells.
A large number of immune receptors consist of nucleotide binding site-leucine rich repeat (NBS-LRR) proteins and leucine rich repeat-receptor-like kinases (LRR-RLK) that play a crucial role in plant disease resistance. Although many NBS-LRR genes have been previously identified in Zea mays, there are no reports on identifying NBS-LRR genes encoded in the N-terminal Toll/interleukin-1 receptor (TIR) motif and identifying genome-wide LRR-RLK genes. In the present study, 151 NBS-LRR genes and 226 LRR-RLK genes were identified after performing bioinformatics analysis of the entire maize genome. Of these identified genes, 64 NBS-LRR genes and four TIR-NBS-LRR genes were identified for the first time. The NBS-LRR genes are unevenly distributed on each chromosome with gene clusters located at the distal end of each chromosome, while LRR-RLK genes have a random chromosomal distribution with more paired genes. Additionally, six LRR-RLK/RLPs including FLS2, PSY1R, PSKR1, BIR1, SERK3, and Cf5 were characterized in Zea mays for the first time. Their predicted amino acid sequences have similar protein structures with their respective homologues in other plants, indicating that these maize LRR-RLK/RLPs have the same functions as their homologues act as immune receptors. The identified gene sequences would assist in the study of their functions in maize.
Maize rough dwarf disease (MRDD) is a severe viral disease of maize that occurs worldwide, particularly in the summer maize-growing areas in China, resulting in yield losses and quality deterioration in susceptible maize varieties. An effective solution to control MRDD is to use resistance genes to improve the behavior of susceptible genotypes. Here, we employed maize F2 populations derived from a cross between susceptible line S221 and resistant line K36 for the deep sequencing of the two DNA pools containing extremely resistant and susceptible F2 individuals, and used traditional linkage analysis to locate the resistance-related genomic region. The results showed that MRDD resistance in K36 was controlled by a single dominant locus, and an associated region was identified within the genomic interval of 68,396,487 bp and 69,523,478 bp on chromosome 6. Two simple sequence repeat (SSR) markers 6F29R29 and 6F34R34 were tightly linked to the MRDD resistance locus. The findings of the present study improve our understanding of the inheritance patterns of MRDD resistance, and should inform MRDD-resistant maize breeding programs.
The presence and morphology of plant brace roots are important root architecture traits. Brace roots contribute significantly to effective anchorage and water and nutrient uptake during late growth and development, and more importantly, have a substantial influence on grain yield under soil flooding or water limited conditions. However, little is known about the genetic mechanisms that underlie brace root traits. In this study, quantitative trait loci (QTLs) for presence of brace roots from the sorghum landrace “Sansui” were mapped and associated molecular markers were identified. A linkage map was constructed with 109 assigned simple sequence repeat markers using a F2 mapping population derived from the cross Sansui/Jiliang 2. Two QTLs associated with presence of brace roots were localized on chromosomes 6 and 7. The major QTL on chromosome 7 between markers Dsenhsbm7 and Xcup 70 explained about 52.5% of the phenotypic variation, and the minor QTL on chromosome 6 was flanked by Xtxp127 and Xtxp6 and accounted for 7.0% of phenotypic variation. These results will provide information for the improvement of sorghum root architecture associated with brace roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.