GRAS transcription factors are known to play important roles in plant signal transduction and development. A comprehensive study was conducted to explore the GRAS family in the Brassica juncea genome. A total of 88 GRAS genes were identified which were categorized into nine groups according to the phylogenetic analysis. Gene structure analysis showed a high group-specificity, which corroborated the gene grouping results. The chromosome distribution and sequence analysis suggested that gene duplication events are vital for the expansion of GRAS genes in the B. juncea genome. The changes in evolution rates and amino acid properties among groups might be responsible for their functional divergence. Interaction networks and cis-regulatory elements were analyzed including DELLA and eight interaction proteins (including four GID1, two SLY1, and two PIF3 proteins) that are primarily involved in light and hormone signaling. To understand their regulatory role in growth and development, the expression profiles of BjuGRASs and interaction genes were examined based on transcriptome data and qRT-PCR, and selected genes (BjuGRAS3, 5, 7, 8, 10, BjuB006276, BjuB037910, and BjuA021658) had distinct temporal expression patterns during stem swelling, indicating that they possessed diverse regulatory functions during the developmental process. These results contribute to our understanding on the GRAS gene family and provide the basis for further investigations on the evolution and functional characterization of GRAS genes.
Accurate analysis of gene expression requires selection of appropriate reference genes. In this study, we report analysis of eight candidate reference genes (ACTIN, UBQ, EF-1α, UBC, IF-4α, TUB, PP2A, and HIS), which were screened from the genome and transcriptome data in Brassica juncea. Four statistical analysis softwares geNorm, NormFinder, BestKeeper, and RefFinder were used to test the reliability and stability of gene expression of the reference genes. To further validate the stability of reference genes, the expression levels of two CYCD3 genes (BjuB045330 and BjuA003219) were studied. In addition, all genes in the xyloglucan endotransglucosylase/hydrolase (XTH) family were identified in B. juncea and their patterns at different periods of stem enlargement were analyzed. Results indicated that UBC and TUB genes showed stable levels of expression and are recommended for future research. In addition, XTH genes were involved in regulation of stem enlargement expression. These results provide new insights for future research aiming at exploring important functional genes, their expression patterns and regulatory mechanisms for mustard development.
The composition and content of glucosinolates were investigated in the edible parts (petioles, peel and flesh) of tuber mustard, bamboo shoots mustard and baby mustard by high-performance liquid chromatography to reveal the association between the different cooking methods and their glucosinolate profiles. Eight glucosinolates were identified from tuber mustard and baby mustard, including three aliphatic glucosinolates, four indole glucosinolates and one aromatic glucosinolate. Only six of the eight glucosinolates were detected in bamboo shoots mustard. The results show that the distribution and content of glucosinolates varied widely among the different tissues and species. The highest contents of glucosinolates in tuber mustard, bamboo shoots mustard and baby mustard were found in flesh, petioles and peel, respectively. The content of total glucosinolates ranged from 5.21 µmol g –1 dry weight in bamboo shoots mustard flesh to 25.64 µmol g −1 dry weight in baby mustard peel. Aliphatic glucosinolates were predominant in the three stem mustards, followed by indole and aromatic glucosinolates. Sinigrin was the predominant glucosinolate in the three stem mustards. Sinigrin content in tuber mustard was slightly higher than that in baby mustard and much higher than that in bamboo shoots mustard, suggesting that the pungent-tasting stem mustards contained more sinigrin. In addition, a principal components analysis showed that bamboo shoots mustard was distinguishable from the other two stem mustards. A variance analysis indicated that the glucosinolates were primarily influenced by a species × tissue interaction. The correlations among glucosinolates were also analysed.
In this study, we report the isolation and purification of protoplasts from Chinese kale (Brassica oleracea var. alboglabra) hypocotyls, and their transient gene expression transformation and subcellular localization of BaMYB75 (Bol042409). The upshot is that the vintage protocol included 5-d hypocotyls that were enzymatically hydrolyzed for 8 h in enzyme solution (3.0% cellulase, 0.5% pectolase, and 0.5 M mannitol), and the protoplasts were purified by precipitation. The total yield of protoplasts was 8 × 105 protoplast g−1 fresh weight, and the protoplasts’ viability was 90%. The maximum transformation efficiency obtained by using green fluorescent protein (GFP) as a detection gene was approximately 45% when the polyethylene glycol (PEG)4000 concentration was 40% and transformation time was 20 min. In addition, BaMYB75 was ultimately localized in the nucleus of Chinese kale hypocotyl protoplasts, verifying the validity and reliability of this transient transformation system. An effective and economical hypocotyl protoplast isolation, purification, and transformation system was established for Chinese kale in this study. This effectively avoided interference of chloroplast autofluorescence compared to using mesophyll cells, laying the foundation for future research in the molecular biology of Brassica vegetables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.