Peptidoglycan is an essential crosslinked polymer that surrounds bacteria and protects them from osmotic lysis. Beta-lactam antibiotics target the final stages of peptidoglycan biosynthesis by inhibiting the transpeptidases that crosslink glycan strands to complete cell wall assembly. Characterization of transpeptidases and their inhibition by beta-lactams has been hampered by lack of access to substrate. We describe a general approach to accumulate Lipid II in bacteria and to obtain large quantities of this cell wall precursor. We demonstrate utility by isolating Staphylococcus aureus Lipid II and reconstituting the synthesis of crosslinked peptidoglycan by the essential penicillin-binding protein 2, PBP2, which catalyzes both glycan polymerization and transpeptidation. We also show that we can compare the potencies of different beta-lactams by directly monitoring transpeptidase inhibition. The methods reported here will enable a better understanding of cell wall biosynthesis and facilitate studies of next-generation transpeptidase inhibitors.
Penicillin-binding
proteins (PBPs) are involved in the synthesis
and remodeling of bacterial peptidoglycan (PG). Staphylococcus
aureus expresses four PBPs. Genetic studies in S.
aureus have implicated PBP4 in the formation of highly cross-linked
PG, but biochemical studies have not reached a consensus on its primary
enzymatic activity. Using synthetic Lipid II, we show here that PBP4
preferentially acts as a transpeptidase (TP) in vitro. Moreover, it is the PBP primarily responsible for incorporating
exogenous d-amino acids into cellular PG, implying that it
also has TP activity in vivo. Notably, PBP4 efficiently
exchanges d-amino acids not only into PG polymers but also
into the PG monomers Lipid I and Lipid II. This is the first demonstration
that any TP domain of a PBP can activate the PG monomer building blocks.
Exploiting the promiscuous TP activity of PBP4, we developed a simple,
highly sensitive assay to detect cellular pools of lipid-linked PG
precursors, which are of notoriously low abundance. This method, which
addresses a longstanding problem, is useful for assessing how genetic
and pharmacological perturbations affect precursor levels, and may
facilitate studies to elucidate antibiotic mechanism of action.
Sacculus is a peptidoglycan matrix that protects bacteria from osmotic lysis. In Gram-positive organisms, the sacculus is densely functionalized with glycopolymers important for survival, but how assembly occurs is not known. In Staphylococcus aureus, three LCP family members have been implicated in attaching the major glycopolymer wall teichoic acid (WTA) to peptidoglycan, but ligase activity has not been demonstrated for these or any other LCP proteins. Using WTA and peptidoglycan substrates produced chemoenzymatically, we show that all three proteins can transfer WTA precursors to nascent peptidoglycan, establishing that LCP proteins are peptidoglycan-glycopolymer ligases. Although all S. aureus LCP proteins have the capacity to attach WTA to PG, we show that their cellular functions are not redundant. Strains lacking lcpA have phenotypes similar to WTA null strains, indicating that this is the most important WTA ligase. This work provides a foundation for studying how LCP enzymes participate in cell wall assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.