Based on the Armstrong model and the established electromechanical model of a Galfenol cantilever energy harvester, a nonlinear dynamic model is proposed to describe the mechanical-magneto-electro coupled characteristics of the device. Comparisons between the experimental and calculated results show that the proposed model can provide a reasonable qualitative indication of data trends, and can predict the effects of the acceleration excitation, the load resistance, and the bias magnetic field on the output performance of the device, thus has very strong practicability.Index Terms-Armstrong model, energy harvester, Galfenol, inverse magnetostrictive effect.
A new closed-loop magnetic current sensor is presented in this paper. The sensor consists of two toroidal magnetic cores. One core works in fluxgate principle for the measurement of dc and low-frequency ac, and the other one is used as a current transformer for higher frequency application. Based on the simulation results, a prototype was designed, and the test results have a good agreement with the simulation results. The closed-loop configuration with a magnetic core and a feedback winding in the sensor improved the sensitivity of the sensor, eliminated the offset and drift related to temperature, and greatly reduced the error caused by magnetic hysteresis phenomenon. It can measure currents up to 20 A, with an accuracy of 0.5%, and a 50 kHz small signal bandwidth.Index Terms-Closed loop, fluxgate principle, magnetic hysteresis.
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.