The structural basis for the divalent cation-dependent binding of heterodimeric alphabeta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alphaVbeta3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alphaV and beta3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. The tertiary rearrangements take place in betaA, the ligand-binding domain of beta3; in the complex, betaA acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alphaV relative to beta3.
Integrins are αβ heterodimeric receptors that mediate divalent cation-dependent cell-cell and cellmatrix adhesion through tightly regulated interactions with ligands. We have solved the crystal structure of the extracellular portion of integrin αVβ3 at 3.1 Å resolution. Its 12 domains assemble into an ovoid "head" and two "tails." In the crystal, αVβ3 is severely bent at a defined region in its tails, reflecting an unusual flexibility that may be linked to integrin regulation. The main inter-subunit interface lies within the head, between a seven-bladed β-propeller from αV and an A domain from β3, and bears a striking resemblance to the Gα/Gβ interface in G proteins. A metal ion-dependent adhesion site (MIDAS) in the βA domain is positioned to participate in a ligand-binding interface formed of loops from the propeller and βA domains. MIDAS lies adjacent to a calcium-binding site with a potential regulatory function.Integrins are large heterodimeric cell surface receptors found in many animal species ranging from sponges to mammals [reviewed in (1)]. These receptors are involved in fundamental cellular processes such as attachment, migration, proliferation, differentiation, and survival. Integrins also contribute to the initiation and/or progression of many common diseases including neoplasia, tumor metastasis, immune dysfunction, ischemia-reperfusion injury, viral infections, osteoporosis, and coagulopathies [reviewed in (2,3)]. An integrin is ~280 Å long and consists of one α (150 to 180 kD) and one β (~90 kD) subunit, both of which are type I membrane proteins. Eighteen α and eight β mammalian subunits are known, which assemble noncovalently into 24 different heterodimers. Contacts between the α and β subunits primarily involve their NH 2 -terminal halves [reviewed in (1)], which together form a globular head; the remaining portions form two rod-shaped tails (4-7) that span the plasma membrane.Like other receptors, integrins transmit signals to the cell interior (so-called "outside-in" signaling), which regulate organization of the cytoskeleton, activate kinase signaling cascades, and modulate the cell cycle and gene expression [reviewed in (8)]. Unlike other receptors, however, ligand binding with integrins is not generally constitutive but is regulated to reflect the activation state of the cell. This "inside-out" regulation of integrin affinity protects the host
Nonstructural protein 14 (nsp14) of coronaviruses (CoV) is important for viral replication and transcription. The N-terminal exoribonuclease (ExoN) domain plays a proofreading role for prevention of lethal mutagenesis, and the C-terminal domain functions as a (guanine-N7) methyl transferase (N7-MTase) for mRNA capping. The molecular basis of both these functions is unknown. Here, we describe crystal structures of severe acute respiratory syndrome (SARS)-CoV nsp14 in complex with its activator nonstructural protein10 (nsp10) and functional ligands. One molecule of nsp10 interacts with ExoN of nsp14 to stabilize it and stimulate its activity. Although the catalytic core of nsp14 ExoN is reminiscent of proofreading exonucleases, the presence of two zinc fingers sets it apart from homologs. Mutagenesis studies indicate that both these zinc fingers are essential for the function of nsp14. We show that a DEEDh (the five catalytic amino acids) motif drives nucleotide excision. The N7-MTase domain exhibits a noncanonical MTase fold with a rare β-sheet insertion and a peripheral zinc finger. The cap-precursor guanosine-P3-adenosine-5′,5′-triphosphate and S-adenosyl methionine bind in proximity in a highly constricted pocket between two β-sheets to accomplish methyl transfer. Our studies provide the first glimpses, to our knowledge, into the architecture of the nsp14-nsp10 complex involved in RNA viral proofreading.CoV | nsp14 | proofreading | exoribonuclease | methyltransferase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.