With the development of deep learning algorithms, more and more deep learning algorithms are being applied to remote sensing image classification, detection, and semantic segmentation. The landslide semantic segmentation of a remote sensing image based on deep learning mainly uses supervised learning, the accuracy of which depends on a large number of training data and high-quality data annotation. At this stage, high-quality data annotation often requires the investment of significant human effort. Therefore, the high cost of remote sensing landslide image data annotation greatly restricts the development of a landslide semantic segmentation algorithm. Aiming to resolve the problem of the high labeling cost of landslide semantic segmentation with a supervised learning method, we proposed a remote sensing landslide semantic segmentation with weakly supervised learning method combing class activation maps (CAMs) and cycle generative adversarial network (cycleGAN). In this method, we used the image level annotation data to replace pixel level annotation data as the training data. Firstly, the CAM method was used to determine the approximate position of the landslide area. Then, the cycleGAN method was used to generate the fake image without a landslide, and to make the difference with the real image to obtain the accurate segmentation of the landslide area. Finally, the pixel-level segmentation of the landslide area on remote sensing image was realized. We used mean intersection-over-union (mIOU) to evaluate the proposed method, and compared it with the method based on CAM, whose mIOU was 0.157, and we obtain better result with mIOU 0.237 on the same test dataset. Furthermore, we made a comparative experiment using the supervised learning method of a u-net network, and the mIOU result was 0.408. The experimental results show that it is feasible to realize landslide semantic segmentation in a remote sensing image by using weakly supervised learning. This method can greatly reduce the workload of data annotation.
Road markings that provide instructions for unmanned driving are important elements in high-precision maps. In road information collection technology, multi-beam mobile LiDAR scanning (MLS) is currently adopted instead of traditional mono-beam LiDAR scanning because of the advantages of low cost and multiple fields of view for multi-beam laser scanners; however, the intensity information scanned by multi-beam systems is noisy and current methods designed for road marking detection from mono-beam point clouds are of low accuracy. This paper presents an accurate algorithm for detecting road markings from noisy point clouds, where most nonroad points are removed and the remaining points are organized into a set of consecutive pseudo-scan lines for parallel and/or online processing. The road surface is precisely extracted by a moving fitting window filter from each pseudo-scan line, and a marker edge detector combining an intensity gradient with an intensity statistics histogram is presented for road marking detection. Quantitative results indicate that the proposed method achieves average recall, precision, and Matthews correlation coefficient (MCC) levels of 90%, 95%, and 92%, respectively, showing excellent performance for road marking detection from multi-beam scanning point clouds.
Insulator extraction from images or 3D point clouds is an important part of automatic power inspection by unmanned airborne vehicles (UAVs), which is vital for improving the efficiency of inspection and the stability of power grids. However, for point cloud data, many challenges, such as the diversity of pylon shape and insulator type, complex topology, and similarity of structures, were not tackled with the study of power element extraction. To efficiently identify the small insulators from complex power transmission corridor (PTC) scenarios, this paper proposes a robust extraction method by fusing multi-scale neighborhood and multi-feature entropy weighting. The pylon head is segmented according to the aspect ratio of horizontal slices following the locating of the pylons based on the height difference and continuous vertical distribution firstly. Aiming to quantify the different contributions of features in decision-making and better segment insulators, a feature evaluation system combined with information entropy, eigen entropy-based optimal neighborhood selection, and designed multi-scale features is constructed to identify suspension insulators and tension insulators. In the optimization step, a region erosion and growing method is proposed to segment complete insulator strings by enlarging the perspectives to obtain more object representations. The extraction results of 82 pylons with 654 insulators demonstrate that the proposed method is suitable for different pylon shapes and sizes. The identification accuracy of the whole line achieves 98.23% and the average F1 score is 90.98%. The proposed method can provide technical support for automatic UAV inspection and pylon reconstruction.
Power-line inspection is an important means to maintain the safety of power networks. Light detection and ranging (LiDAR) technology can provide high-precision 3D information about power corridors for automated power-line inspection, so there are more and more utility companies relying on LiDAR systems instead of traditional manual operation. However, it is still a challenge to automatically detect power lines with high precision. To achieve efficient and accurate power-line extraction, this paper proposes an algorithm using entropy-weighting feature evaluation (EWFE), which is different from the existing hierarchical-multiple-rule evaluation of many geometric features. Six significant features are selected (Height above Ground Surface (HGS), Vertical Range Ratio (VRR), Horizontal Angle (HA), Surface Variation (SV), Linearity (LI) and Curvature Change (CC)), and then the features are combined to construct a vector for quantitative evaluation. The feature weights are determined by an entropy-weighting method (EWM) to achieve optimal distribution. The point clouds are filtered out by the HGS feature, which possesses the highest entropy value, and a portion of non-power-line points can be removed without loss of power-line points. The power lines are extracted by evaluation of the other five features. To decrease the interference from pylon points, this paper analyzes performance in different pylon situations and performs an adaptive weight transformation. We evaluate the EWFE method using four datasets with different transmission voltage scales captured by a light unmanned aerial vehicle (UAV) LiDAR system and a mobile LiDAR system. Experimental results show that our method demonstrates efficient performance, while algorithm parameters remain consistent for the four datasets. The precision F value ranges from 98.4% to 99.7%, and the efficiency ranges from 0.9 million points/s to 5.2 million points/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.