MicroRNA plays an important role in gastric cancer (GC) development, while the function of miR-497-5p in this disease remains unknown. In the present study, we demonstrated miR-497-5p as a tumor suppressive microRNA in GC. miR-497-5p was down-regulated in GC tissues and its expression was associated with the disease stage. Inhibition of miR-497-5p promoted GC cell proliferation and growth. By contrast, miR-497-5p ectopic expression suppressed the proliferation and growth of GC cells. In addition, miR-497-5p inhibited DNA synthesis and enhanced apoptosis in GC cells. The cell cycle progression was suppressed by miR-497-5p. Mechanistically, miR-497-5p directly targeted and suppressed the expression of pyruvate dehydrogenase kinase 3 (PDK3), which is highly expressed in GC tissues. Over-expression of PDK3 promoted the proliferation of GC cells. Our study revealed that miR-497-5p inhibited GC cell proliferation and growth via targeting PDK3.
The histone demethylase JMJD family is involved in various physiological and pathological functions. However, the roles of JMJD1A in the cardiovascular system remain unknown. Here, we studied the function of JMJD1A in cardiac hypertrophy. The mRNA and protein levels of JMJD1A were significantly downregulated in the hearts of human patients with hypertrophic cardiomyopathy and the hearts of C57BL/6 mice underwent cardiac hypertrophy induced by transverse aortic constriction (TAC) surgery or isoproterenol (ISO) infusion. In neonatal rat cardiomyocytes (NRCMs), siRNA-mediated JMJD1A knockdown facilitated ISO or angiotensin II-induced increase in cardiomyocyte size, protein synthesis, and expression of hypertrophic fetal genes, including atrial natriuretic peptide (Anp), brain natriuretic peptide (Bnp), and Myh7. By contrast, overexpression of JMJD1A with adenovirus repressed the development of ISO-induced cardiomyocyte hypertrophy. We observed that JMJD1A reduced the production of total cellular and mitochondrial levels of reactive oxygen species (ROS), which was critically involved in the effects of JMJD1A because either N-acetylcysteine or MitoTEMPO treatment blocked the effects of JMJD1A deficiency on cardiomyocyte hypertrophy. Mechanism study demonstrated that JMJD1A promoted the expression and activity of Catalase under basal condition or oxidative stress. siRNA-mediated loss of Catalase blocked the protection of JMJD1A overexpression against ISO-induced cardiomyocyte hypertrophy. These findings demonstrated that JMJD1A loss promoted cardiomyocyte hypertrophy in a Catalase and ROS-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.