Abnormal functional brain connectivity could be considered an endophenotype of psychosis in schizophrenia. Identifying candidate endophenotypes may serve as a tool for elucidating its biological and neural mechanisms. The present study investigated the similarities and differences of features of brain network connectivity between patients and their first-degree relatives. Independent component analysis was conducted on imaging data collected from 34 healthy controls, 33 schizophrenia patients, and 30 unaffected first-degree relatives. The correlation between functional connectivity with neurocognitive performance and clinical symptoms were calculated. Abnormalities of between-network connectivity largely overlapped in patients and first-degree relatives, but the extent of such abnormalities was relatively minor in relatives. Negative connectivity between language networks and executive control networks was impaired in schizophrenia patients and their first-degree relatives, and this decreased connectivity was correlated with performance in language processing. Similar impairments were found in high-visual network and executive network coupling, and this decreased connection was correlated with the severity of positive symptoms in patients. The results indicated that abnormal functional connectivity within and between perceptual systems (i.e., high-visual and language) and executive control networks was related to the generic risk of schizophrenia, which makes it a potential endophenotype for schizophrenia.
Previous studies suggested that electroconvulsive therapy can influence regional metabolism and dopamine signaling, thereby alleviating symptoms of schizophrenia. It remains unclear what patients may benefit more from the treatment. The present study sought to identify biomarkers that predict the electroconvulsive therapy response in individual patients. Thirty-four schizophrenia patients and 34 controls were included in this study. Patients were scanned prior to treatment and after 6 weeks of treatment with antipsychotics only (n = 16) or a combination of antipsychotics and electroconvulsive therapy (n = 13). Subject-specific intrinsic connectivity networks were computed for each subject using a group information-guided independent component analysis technique. Classifiers were built to distinguish patients from controls and quantify brain states based on intrinsic connectivity networks. A general linear model was built on the classification scores of first scan (referred to as baseline classification scores) to predict treatment response. Classifiers built on the default mode network, the temporal lobe network, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum achieved a cross-validated classification accuracy of 83.82%, with specificity of 91.18% and sensitivity of 76.47%. After the electroconvulsive therapy, psychosis symptoms of the patients were relieved and classification scores of the patients were decreased. Moreover, the baseline classification scores were predictive for the treatment outcome. Schizophrenia patients exhibited functional deviations in multiple intrinsic connectivity networks which were able to distinguish patients from healthy controls at an individual level. Patients with lower classification scores prior to treatment had better treatment outcome, indicating that the baseline classification scores before treatment is a good predictor for treatment outcome.
Schizophrenia (SCZ) patients and their unaffected first‐degree relatives (FDRs) share similar functional neuroanatomy. However, it remains largely unknown to what extent unaffected FDRs with functional neuroanatomy patterns similar to patients can be identified at an individual level. In this study, we used a multivariate pattern classification method to learn informative large‐scale functional networks (FNs) and build classifiers to distinguish 32 patients from 30 healthy controls and to classify 34 FDRs as with or without FNs similar to patients. Four informative FNs—the cerebellum, default mode network (DMN), ventral frontotemporal network, and posterior DMN with parahippocampal gyrus—were identified based on a training cohort and pattern classifiers built upon these FNs achieved a correct classification rate of 83.9% (sensitivity 87.5%, specificity 80.0%, and area under the receiver operating characteristic curve [AUC] 0.914) estimated based on leave‐one‐out cross‐validation for the training cohort and a correct classification rate of 77.5% (sensitivity 72.5%, specificity 82.5%, and AUC 0.811) for an independent validation cohort. The classification scores of the FDRs and patients were negatively correlated with their measures of cognitive function. FDRs identified by the classifiers as having SCZ patterns were similar to the patients, but significantly different from the controls and FDRs with normal patterns in terms of their cognitive measures. These results demonstrate that the pattern classifiers built upon the informative FNs can serve as biomarkers for quantifying brain alterations in SCZ and help to identify FDRs with FN patterns and cognitive impairment similar to those of SCZ patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.