Abstract:The polyurethane prepolymer terminated with a double bond was synthesized using isophorone diisocyanate (IPDI), hydroxyl terminated polybutadiene (HTPB), 1,4-butanediol (BDO), and 2-hydroxyethyl acrylate (HEA). Then, a series of innovative UV-curable polyurethane coatings were prepared by blending ene-terminated polyurethane, fluoroacrylate monomer, and multifunctional thiol crosslinker upon UV exposure. The incorporation of fluoroacrylate monomer and multifunctional thiols into polyurethane coatings significantly enhanced the hydrophobic property, mechanical property, pencil hardness, and glossiness of the polyurethane coatings. This method of preparing UV crosslinkable, hydrophobic polyurethane coatings based on thiol-ene chemistry exhibited numerous advantages over other UV photocuring systems.
Melt blending is an effective way to prepare new composite materials, but most polymers are incompatible. In order to reduce the interfacial tension and obtain fine and stable morphology with internal symmetric micro-textures, suitable compatibilizers should be added to the blend. The two immiscible polymers, low-density polyethylene (LDPE) and polystyrene (PS), were compatibilized by styrene/ethylene/butylene/styrene block copolymers grafted with maleic anhydride (SEBS-g-MAH) and organomontmorillonite (OMMT). The scanning electron microscope results indicated that the size of the PS phase decreased with increasing the content of SEBS-g-MAH. By introducing OMMT into LDPE/PS/SEBS-g-MAH composites, the compatibility of composites was further improved. The rheological analysis and Cole–Cole plot analysis indicated that the addition of SEBS-g-MAH and OMMT increased the interaction between the two phases. The tensile strength, elongation at break, and impact strength of the LDPE/PS/SEBS-g-MAH (70/30/7, wt%) composite increased by 64%, 255%, and 380%, respectively, compared with the LDPE/PS (70/30, wt%) composite. A small amount of OMMT could synergistically compatibilize the LDPE/PS composite with SEBS-g-MAH. After adding 0.3% OMMT into the LDPE/PS/SEBS-g-MAH system, the tensile strength, elongation at break, and impact strength of the composite were further increased to 18.57 MPa, 71.87%, and 33.28 kJ/m2, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.