Background. DCM is the most common and malignant complication of diabetes. It is characterized by myocardial dilatation, hypertrophy, fibrosis, ventricular remodeling, and contractile dysfunction. Although many studies have demonstrated the function of miRNAs in the progression of DCM, but the specific role of miR-372-3p in DCM remains unknown. Methods. C57/BL6J mice were used to construct mouse models of DCM by intraperitoneal injection of STZ (50 mg/kg/d) for 5 consecutive days. Then the mice were randomly divided into model group (intramyocardial injection of empty lentivirus) and miR-372-3p KD group (intramyocardial injection of miR-372-3p KD lentivirus at 10 9 /mouse). Besides, the control group (injection of 0.9% normal saline) was also set up. LY294002, a PI3K inhibitor, was employed in the current study. Western blotting, immunofluorescence staining, quantitative ultrasound method, Masson's trichrome staining, and bioinformatics analysis were performed. Results. It was found that miR-372-3p KD significantly improved left ventricular dysfunction and cardiac hypertrophy in DCM mice. Furthermore, it also improved myocardial interstitial fibrosis and remodeling in DCM mice. Immunofluorescence staining and RT-qPCR revealed that miR-372-3p KD might accelerate cardiac remodeling by increasing angiogenesis in DCM mice. Western blotting results revealed that miR-372-3p was an upstream target of the PI3K/ AKT-mTOR and HIF-1α signals, as well as NOX2, NOX4, which were responsible for angiogenesis in DCM mice. Besides, the in vitro experiment showed that LY294002 markedly diminished the increased expression levels of p-PI3K, AKT, p-mTOR, p-P70S6K, HIF-1α, NOX2, and NOX4 in the model group and the miR-372-3p KD group, suggesting that PI3K signaling pathway and oxidative stress are involved in miR-372-3p KD-induced angiogenesis in HG-stimulated C166 cells. Conclusions. MiR-372-3p KD inhibits the development of DCM via activating the PI3K/AKT/mTOR/HIF-1α signaling pathway or suppressing oxidative stress. This offers an applicable biomarker for DCM treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.