Non-alcoholic fatty liver disease (NAFLD) was a world-wide health burden. H3K27 acetylation, long non-coding RNA (lncRNA), and miRNA were all implicated in NAFLD regulation, yet the detailed regulatory mechanism was not well understood. LncRNA NEAT1, miR-212-5p, and GRIA3 expression were detected both in high fatty acid-treated hepatocytes cells and NAFLD patients. Lipid droplets were stained and analyzed by oil red O staining. Expression of fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), and GRIA3 was detected by qRT-PCR and western blot. RNA level of lncRNA NEAT1 and miR-212-5p was analyzed by qRT-PCR. The binding sequences of lncRNA NEAT1/miR-212-5p and miR-212-5p/GRIA3 were predicted bioinformatically and validated through luciferase assay. ChIP was performed to analyze H3K27 acetylation on the promoter of lncRNA NEAT1. LncRNA NEAT1 and GRIA3 was upregulated, while miR-212-5p was downregulated in NAFLD patients. FFA promoted lncRNA NEAT1 and GRIA3 expression while suppressing miR-212-5p and promoted lipid accumulation as indicated by increased oil red O staining and FAS and ACC expression. ChIP indicated enrichment of H3K27 on NEAT1 promoter. Inhibition of H3K27 acetylation suppressed lncRNA NEAT1 level. Luciferase results indicated direct interaction of NEAT1/miR-212-5p (which was confirmed by RIP) and miR-212-5p/ GRIA3. LncRNA NEAT1 knockdown upregulated miR-212-5p level and inhibited FFA-induced lipid accumulation while suppressing GRIA3 expression. Such function was antagonized by miR-212-5p inhibition and GRIA3 knockdown counteracted with miR-212-5p inhibition. H3K27 acetylation was enriched within the promoter of lncRNA NEAT1 and promoted lncRNA NEAT1 transcription. LncRNA NEAT1 could then interact with miR-212-5p and suppress its cellular concentration.
The HBx protein of hepatitis B virus (HBV) is widely recognized to be a critical oncoprotein contributing to the development of HBV-related hepatocellular carcinoma (HCC). In addition, cationic amino acid transporter 1 (CAT-1) gene is a target of miR-122. In this study, we found that CAT-1 protein levels were higher in HBV-related HCC carcinomatous tissues than in para-cancerous tumor tissues, and that CAT-1 promoted HCC cell growth, proliferation, and metastasis. Moreover, HBx-induced decreases in Gld2 and miR-122 levels that contributed to the upregulation of CAT-1 in HCC. These results indicate that a Gld2/miR-122/CAT-1 pathway regulated by HBx likely participates in HBV-related hepatocellular carcinogenesis.
Hepatitis C virus (HCV) infection is a major global health issue. Although the search for HCV treatments has resulted in great achievements, the current treatment methods have limitations, and new methods and drugs for hepatitis C treatment are still required. The aim of the present study was to investigate the effects of artesunate (ART) on HCV replication and compared these effects with those of ribavirin (RBV) and interferon-2b (IFN). The study was performed in HCV-infection cell models (JFH1-infected Huh7.5.1 and OR6 cell lines). Our results showed that the antimalarial drug ART inhibited HCV replicon replication in a dose- and time-dependent manner at a concentration that had no effect on the proliferation of exponentially growing host cells, and the inhibitory effect on HCV replication was stronger than RBV but weaker than IFN, as determined by qPCR, luciferase assays, and Western blot analysis. Furthermore, the combination of ART and IFN resulted in a greater inhibition of HCV replication. These findings demonstrated that ART had an inhibitive effect on HCV replication and may be a novel supplemental co-therapy with IFN and RBV for HCV and as an alternative strategy to combat resistance mechanisms that have emerged in the presence of DAA agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.