Chronic heart rate reduction (HRR) therapy following myocardial infarction, using either the pure HRR agent ivabradine or the b-blocker atenolol, has been shown to preserve maximal coronary perfusion, via reduction of perivascular collagen and a decrease in renin-angiotensin system activation. In addition ivabradine, but not atenolol, treatment attenuated the decline in ejection fraction and decreased left ventricular wall stress. In this study, we tested the hypothesis that cell survival within the infarct region was enhanced by these two pharmacological agents. Four weeks after ligating the left anterior descending coronary artery, the percentage of the LV that contained the infarct was similar in the untreated (MI) rats and those chronically treated with ivabradine (MI þ IVA) or atenolol (MI þ ATEN). However, the mean thickness (mm) of the ventricular wall containing the scar was significantly greater in the MI þ IVA, 1.54 (P 0.01) and the MI þ ATEN 1.32, compared to 1.1 in the MI group, due to a 2-fold greater area of surviving cardiomyocytes (P 0.01) in the treated rats compared to the untreated group. Regions of cell survival were usually in the subepicardium, with cardiomyocytes surrounding veins or venules. However, some hearts displayed surviving cells along the endocardium. These data suggest that HRR by either ivabradine or atenolol facilitates a more favorable O2 microenvironment via improved venous flow and decreased O2 demand. We conclude that chronic HRR by these agents may serve to limit infarct expansion and wall thinning and may serve to reduce the potential for ventricular rupture. Anat Rec,
A bacterial strain, Streptomyces albogriseolus LBX-2, was isolated from a soil sample in Chengdu, China. S. albogriseolus LBX-2 is an aerobic and Gram-positive microorganism that is capable of using the polyethylene as the sole carbon source. Results of scanning electron microscopy and tensile tests indicated that S. albogriseolus LBX-2 could cause the damages to polyethylene (PE). Suspension culture of LBX-2 resulted in the weight loss in the PE powder over a 15-day period. The bacterial growth curve assay clearly demonstrated the utilization of n-hexadecane and n-octadecane for the strain LBX-2. Phylogenetic analysis showed that it was grouped in the same clade as S. albogriseolus belonging to Streptomyces. The complete genome of strain LBX-2 consists of a chromosome of 7,210,477 bp and a linear plasmid of 336,677 bp. Compared with other strains of Streptomyces, the genome size of S. albogriseolus LBX-2 was smaller than the average but its guanine and cytosine content (72.47%) was higher than the others. The Non-Redundant Protein Database (NR), Kyoto Encyclopedia of Genes and Genomes (KEGG), SwissProt, Gene Ontology (GO) and Clusters of Orthologous Groups (COG) annotations provided information on the specific functions of encoded proteins. A total of 21 monooxygenase and 22 dioxygenase genes were found in its genome. Synteny comparison with the genome of Streptomyces coelicolor A3(2) revealed a low overall genetic diversity between them. This study provides valuable information to reveal the underlying mechanisms on PE degradation by S. albogriseolus LBX-2.
The present study was to explore whether alarin could alleviate heart failure (HF) and attenuate cardia fibrosis via inhibiting oxidative stress. The fibrosis of cardiac fibroblasts (CFs) was induced by angiotensin (Ang) II. HF models were induced by ligation of the left anterior descending artery to cause ischemia myocardial infarction (MI) in Sprague–Dawley rats. Alarin (1.0 nM/kg/d) was administrated by intraperitoneal injection for 28 days. The decreases of left ventricular (LV) ejection fraction (EF), fractional shortening (FS), the maximum of the first differentiation of LV pressure (LV ± dp/dtmax) and LV systolic pressure (LVSP), and the increases of LV volume in systole (LVVS), LV volume in diastole (LVVD), LV end-systolic diameter (LVESD) and LV end-diastolic diameter (LVEDD) in MI rats were improved by alarin treatment. The increases in the expression levels of collagen I, collagen III, and transforming growth factor (TGF)-β were inhibited by alarin treatment in CFs and in the hearts of MI rats. The levels of NADPH oxidase (Nox) activity, superoxide anions and malondialdehyde (MDA) levels were increased, and the level of superoxide dismutase (SOD) activity was reduced in Ang II-treated CFs, which were reversed by alarin. Nox1 overexpression reversed the effects of alarin on attenuating the increases of collagen I, collagen III and TGF-β expression levels induced by Ang II in CFs. These results indicated that alarin improved HF and cardiac fibrosis via inhibiting oxidative stress in HF rats. Nox1 played important roles in the regulation of alarin effects on attenuating CFs fibrosis induced by Ang II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.