All-inorganic perovskite solar cells (pero-SCs) are attracting considerable attention due to their promising thermal stability, but their inferior power-conversion efficiency (PCE) and moisture instability are hindering their application. Here, we used a gradient thermal annealing (GTA) method to control the growth of a-CsPbI 2 Br crystals and then utilized a green anti-solvent (ATS) isopropanol to further optimize the morphology of a-CsPbI 2 Br film. Through this GTA-ATS synergetic effect, the growth of a-CsPbI 2 Br crystals could be precisely controlled, leading to a high-quality perovskite film with one-micron average grain size, low root-mean-square of 25.9 nm, and reduced defect density. Pero-SCs based on this CsPbI 2 Br film achieved a champion scan PCE of 16.07% (stabilized efficiency of 15.75%), which is the highest efficiency reported in all-inorganic pero-SCs. Moreover, the CsPbI 2 Br pero-SC demonstrates excellent robustness against moisture and oxygen, and maintains 90% of initial PCE after aging 120 hr under 100 mW/cm 2 UV irradiation.
Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC.
Bulk-heterojunction organic solar cells (OSCs) have received considerable attention with significant progress recently and offer a promising outlook for portable energy resources and building-integrated photovoltaics in the future. Now, it is urgent to promote the research of OSCs toward their commercialization. For the commercial application of OSCs, it is of great importance to develop high performance, high stability, and low cost photovoltaic materials. In this review, a comprehensive overview of the fundamental requirements of photoactive layer materials and interface layer materials toward commercialization is provided, mainly focusing on high performance, green manufacturing, simplifying device fabrication processes, stability, and cost issues. Furthermore, the perspectives and opportunities for this emerging field of materials science and engineering are also discussed.
Charged defects at the surface of the organic–inorganic perovskite active layer are detrimental to solar cells due to exacerbated charge carrier recombination. Here we show that charged surface defects can be benign after passivation and further exploited for reconfiguration of interfacial energy band structure. Based on the electrostatic interaction between oppositely charged ions, Lewis-acid-featured fullerene skeleton after iodide ionization (PCBB-3N-3I) not only efficiently passivates positively charged surface defects but also assembles on top of the perovskite active layer with preferred orientation. Consequently, PCBB-3N-3I with a strong molecular electric dipole forms a dipole interlayer to reconfigure interfacial energy band structure, leading to enhanced built-in potential and charge collection. As a result, inverted structure planar heterojunction perovskite solar cells exhibit the promising power conversion efficiency of 21.1% and robust ambient stability. This work opens up a new window to boost perovskite solar cells via rational exploitation of charged defects beyond passivation.
Polymer solar cells (PSCs) possess the unique features of semitransparency and coloration, which make them potential candidates for applications in aesthetic windows. Here, the authors fabricate inverted semitransparent PSCs with high-quality hybrid Au/Ag transparent top electrodes and finetuned dielectric mirrors (DMs). It is demonstrated that the device color can be tailored and the light harvesting in the PSCs can be enhanced by matching the bandgap of the polymer donors in the active layer with the specifically designed maximum-reflection-center-wavelengths of the DMs. A detailed chromaticity analysis of the semitransparent PSCs from both bottom and top (mirror) views is also carried out. Furthermore, the inverted semitransparent PSCs based on PTB7-Th:PC 71 BM with six pairs of DMs demonstrate a maximum power conversion efficiency (PCE) of 7.0% with an average visible transmittance (AVT) of 12.2%. This efficiency is one of the highest reported for semitransparent PSCs, corresponding to 81.4% of the PCE from opaque counterpart devices. The device design and processing method are also successfully adapted to a flexible substrate, resulting in a device with a competitive PCE of 6.4% with an AVT of 11.5%. To the best of our knowledge, this PCE value is the highest value reported for a flexible semitransparent PSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.