This paper firstly introduces the background of the research on neural network and anomaly identification screening and mineralization prediction under semisupervised learning, then introduces supervised learning, semisupervised learning, unsupervised learning, and reinforcement learning, analyzes and compares their advantages and disadvantages, and concludes that unsupervised learning is the best way to process the data. In the research method, this paper classifies the obtained geochemical data by using semisupervised learning and then trains the obtained samples using the convolutional neural network model to obtain the mineralization prediction model and check its correctness, which finally provides the direction for the subsequent mineralization prediction research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.