In this paper, we investigate joint relay and jammer selection in two-way cooperative networks, consisting of two sources, a number of intermediate nodes, and one eavesdropper, with the constraints of physical-layer security. Specifically, the proposed algorithms select two or three intermediate nodes to enhance security against the malicious eavesdropper. The first selected node operates in the conventional relay mode and assists the sources to deliver their data to the corresponding destinations using an amplify-and-forward protocol. The second and third nodes are used in different communication phases as jammers in order to create intentional interference upon the malicious eavesdropper. First, we find that in a topology where the intermediate nodes are randomly and sparsely distributed, the proposed schemes with cooperative jamming outperform the conventional nonjamming schemes within a certain transmitted power regime. We also find that, in the scenario where the intermediate nodes gather as a close cluster, the jamming schemes may be less effective than their nonjamming counterparts. Therefore, we introduce a hybrid scheme to switch between jamming and nonjamming modes. Simulation results validate our theoretical analysis and show that the hybrid switching scheme further improves the secrecy rate.
In this paper, we investigate joint relay and jammer selection in two-way cooperative networks, consisting of two sources, a number of intermediate nodes, and one eavesdropper, with the constraints of physical layer security. Specifically, the proposed algorithms select two or three intermediate nodes to enhance security against the malicious eavesdropper. The first selected node operates in the conventional relay mode and assists the sources to deliver their data to the corresponding destinations using an amplify-and-forward protocol. The second and third nodes are used in different communication phases as jammers in order to create intentional interference upon the eavesdropper node. Firstly, we find that in a topology where the intermediate nodes are randomly and sparsely distributed, the proposed schemes with cooperative jamming outperform the conventional nonjamming schemes within a certain transmitted power regime. We also find that, in the scenario in which the intermediate nodes gather as a close cluster, the jamming schemes may be less effective than their non-jamming counterparts. Therefore, we introduce a hybrid scheme to switch between jamming and non-jamming modes. Simulation results validate our theoretical analysis and show that the hybrid switching scheme further improves the secrecy rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.