Traditional Chinese medicine (TCM) is not only an effective solution for primary health care, but also a great resource for drug innovation and discovery. To meet the increasing needs for TCM-related data resources, we developed ETCM, an Encyclopedia of Traditional Chinese Medicine. ETCM includes comprehensive and standardized information for the commonly used herbs and formulas of TCM, as well as their ingredients. The herb basic property and quality control standard, formula composition, ingredient drug-likeness, as well as many other information provided by ETCM can serve as a convenient resource for users to obtain thorough information about a herb or a formula. To facilitate functional and mechanistic studies of TCM, ETCM provides predicted target genes of TCM ingredients, herbs, and formulas, according to the chemical fingerprint similarity between TCM ingredients and known drugs. A systematic analysis function is also developed in ETCM, which allows users to explore the relationships or build networks among TCM herbs, formulas,ingredients, gene targets, and related pathways or diseases. ETCM is freely accessible at http://www.nrc.ac.cn:9090/ETCM/. We expect ETCM to develop into a major data warehouse for TCM and to promote TCM related researches and drug development in the future.
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
SUMMARYOne of the most information-rich aspects of gene functional studies is characterization of gene expression profiles at cellular resolution, and subcellular localization of the corresponding proteins. These studies require visualization of the endogenous gene products using specific antibodies, or, more commonly, generation of whole-gene translational fusions with a reporter gene such as a fluorescent protein. To facilitate the generation of such translational fusions and to ensure that all cis-regulatory sequences are included, we have used a bacterial homologous recombination system (recombineering) to insert fluorescent protein tags into genes of interest harbored by transformation-competent bacterial artificial chromosomes (TACs). This approach has several advantages compared to other classical strategies. First, the researcher does not have to guess what the regulatory sequences of a gene are, as tens of thousands of base pairs flanking the gene of interest can be included in the construct. Second, because the genes of interest are not amplified by PCR, there are practically no limits to the size of a gene that can be tagged. Third, there are no restrictions on the location in which the fluorescent protein can be inserted, as the position is determined by sequence homology with the recombination primers. Finally, all of the required strains and TAC clones are publically available, and the experimental procedures described here are simple and robust. Thus, we suggest that recombineering-based gene tagging should be the gold standard for gene expression studies in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.