Cancer is a genomic functional disease with features of oncogene activation and tumor suppressor inactivation. These genomic features have resulted in the limited effectiveness of conventional therapies and therefore forced considerable efforts to explore new types of anticancer agents. It has been clear that chemically synthesized or in vivo-expressed short interfering RNA (siRNA) can specifically and effectively direct homology-dependent post-transcriptional gene silencing. In the present study, we intended to investigate whether siRNA could suppress the proliferation of human cancer cells through interfering oncogene activities and recovering the functions of tumor-suppressor gene. Single siRNA or combinatorial siRNAs were successfully transfected into HeLa cells, lung adenocarcinoma cells, hepatoma cells, ovarian carcinoma cells, and melanoma cells with cationic lipid complexes. These siRNA molecules not only specifically knocked down their cognate targets such as bcl-2, cdk-2, mdm-2, pkc-alpha, tgf-beta1, H-ras, vegf, and GFP mRNAs, but also effectively suppressed the proliferation of cancer cells to different extents. These data suggest that (1) all these human cancer cells preserve RNAi machinery; (2) chemically synthesized and vector-driven siRNAs can be incorporated into intrinsic RNAi system for silencing target mRNA molecules; and (3) the combination of different siRNAs inhibits the growth and proliferation of cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.