TianQin is a planned space-based gravitational wave (GW) observatory consisting of three Earth-orbiting satellites with an orbital radius of about $10^5 \, {\rm km}$. The satellites will form an equilateral triangle constellation the plane of which is nearly perpendicular to the ecliptic plane. TianQin aims to detect GWs between $10^{-4} \, {\rm Hz}$ and $1 \, {\rm Hz}$ that can be generated by a wide variety of important astrophysical and cosmological sources, including the inspiral of Galactic ultra-compact binaries, the inspiral of stellar-mass black hole binaries, extreme mass ratio inspirals, the merger of massive black hole binaries, and possibly the energetic processes in the very early universe and exotic sources such as cosmic strings. In order to start science operations around 2035, a roadmap called the 0123 plan is being used to bring the key technologies of TianQin to maturity, supported by the construction of a series of research facilities on the ground. Two major projects of the 0123 plan are being carried out. In this process, the team has created a new-generation $17 \, {\rm cm}$ single-body hollow corner-cube retro-reflector which was launched with the QueQiao satellite on 21 May 2018; a new laser-ranging station equipped with a $1.2 \, {\rm m}$ telescope has been constructed and the station has successfully ranged to all five retro-reflectors on the Moon; and the TianQin-1 experimental satellite was launched on 20 December 2019—the first-round result shows that the satellite has exceeded all of its mission requirements.
The TianQin Project is aiming at gravitational wave (GW) detection in space. TianQin GW observatory comprises three satellites orbiting on $1 \times 10^5$ km Earth orbits to form an equilateral-triangle constellation. In order to minimize the variations of arm-length and breathing angle, the satellites must be launched and adjusted precisely into an optimized orbit. Therefore, satellite laser ranging must be used to enhance the precision of satellite’s orbit determination. To develop the capability of satellite laser ranging for TianQin’s orbit, the TianQin Laser Ranging Station has been designed and constructed to perform high-precision laser ranging for TianQin satellites and lunar laser ranging as well. Applying a 1064-nm Nd:YAG laser with 100-Hz repetition frequency, 80 pico-second pulse duration, and $2 \times 2$ array of superconducting nanowire single photon detectors, we have obtained the laser echo signals from the five lunar retro-reflector arrays, and the measurement data have been packaged into 234 normal points, including a few data measured during the full-moon lunar phase. Each NP is calculated from continuous measurement for about ten minutes and the statistical error of the normal points is about 7 mm (1$\sigma$).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.