Forchlorfenuron is a low‐toxic phenylurea plant growth regulator. Excessive intake of forchlorfenuron can lead to metabolic disorders of the matrix and be harmful to human health. The chemiluminescence intensity of the KIO4–K2CO3–Mn2+ reaction decreased in the presence of forchlorfenuron. Based on this result, a rapid and sensitive chemiluminescence method was established to determine forchlorfenuron by combining it with a batch injection static device. The injection speed, injection volume and reagent concentration of the forchlorfenuron–KIO4–K2CO3–Mn2+ chemiluminescence reaction were optimized. Under these optimized conditions, the linear range of the method was 1.0–200.0 μg/L, and the limit of detection was 0.29 μg/L (S/N = 3). The chemiluminescence method for the determination of forchlorfenuron could be completed in 10 s. The method was applied to detect the residual forchlorfenuron in dried fruit samples, and the results are consistent with high‐performance liquid chromatography‐mass spectrometry. This method has the advantages of high sensitivity, rapid response, less reagent consumption, and convenient operation. It will provide a new perspective for chemiluminescence for the rapid and sensitive determination of forchlorfenuron in various complex samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.