Background: Our previous study showed Musashi2 (MSI2) promoted chemotherapy resistance and pernicious biology of pancreatic cancer (PC) by down-regulating Numb and p53. We further explored the novel molecular mechanism involving its oncogenic role in PC development. Methods: We investigated the potential role and mechanism of MSI2 in EGF-induced EMT in PC in vitro and vivo. Results: EGF enhanced EGFR (epidermal growth factor receptor) phosphorylation, induced EMT and activated ZEB1-ERK/MAPK signaling in 2 PC cells. However, MSI2 silencing reversed EGF stimulated function, including inhibiting EGF-promoted EMT-like cell morphology and EGF-enhanced cell invasion and migration. Meanwhile, MSI2 silencing inhibited EGF-enhanced EGFR phosphorylation at tyrosine 1068 and reversed EGF-induced change of the key proteins in EMT and ZEB1-ERK/MAPK signaling (ZEB1, E-cad, ZO-1, β-catenin, pERK and c-Myc). Additionally, MSI2 was co-stained and co-immunoprecipitated with ZEB1, pERK and c-Myc in PC cells by IF and co-IP, implying a close interaction between them. In vivo, MSI2 silencing inhibited pancreatic tumor size in situ and distant liver metastases. A close relationship of MSI2 with EMT and ZEB1-ERK/MAPK signaling were also observed in vivo and human PC samples, which coordinately promoted the poor prognosis of PC patients. Conclusions: MSI2 promotes EGF-induced EMT in PC via ZEB1-ERK/MAPK signaling.
Background Our previous study showed that calreticulin (CRT) promoted EGF-induced epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) via Integrin/EGFR-ERK/MAPK signaling. We next investigated the novel signal pathway and molecular mechanism involving the oncogenic role of CRT in PC. Methods We investigated the potential role and mechanism of CRT in regulating intracellular free Ca2+ dependent acute and chronic endoplasmic reticulum stress (ERS)-induced EMT in PC in vitro and vivo. Results Thapsigargin (TG) induced acute ERS via increasing intracellular free Ca2+ in PC cells, which was reversed by CRT silencing. Additionally, CRT silencing inhibited TG-induced EMT in vitro by reversing TG-induced changes of the key proteins in EMT signaling (ZO-1, E-cadherin and Slug) and ERK/MAPK signaling (pERK). TG-promoted cell invasion and migration was also rescued by CRT silencing but enhanced by IRE1α silencing (one of the key stressors in unfolded protein response). Meanwhile, CRT was co-immunoprecipitated and co-localized with IRE1α in vitro and its silencing led to the chronic ERS via upregulating IRE1α independent of IRE1-XBP1 axis. Moreover, CRT silencing inhibited IRE1α silencing-promoted EMT, including inhibiting the activation of EMT and ERK/MAPK signaling and the promotion of cell mobility. In vivo, CRT silencing decreased subcutaneous tumor size and distant liver metastasis following with the increase of IRE1α expression. A negative relationship between CRT and IRE1α was also observed in clinical PC samples, which coordinately promoted the advanced clinical stages and poor prognosis of PC patients. Conclusions CRT promotes EMT in PC via mediating intracellular free Ca2+ dependent TG-induced acute ERS and IRE1α-mediated chronic ERS via Slug and ERK/MAPK signaling.
Our previous studies found overexpression of Musashi2 (MSI2) conduced to the progression and chemoresistance of pancreatic cancer (PC) by negative regulation of Numb and wild type p53 (wtp53). Now, we further investigated the novel signalling involved with MSI2 in PC. We identified inositol‐3‐phosphate synthase 1 (ISYNA1) as a novel tumour suppressor regulated by MSI2. High MSI2 and low ISYNA1 expression were prevalently observed in 91 PC tissues. ISYNA1 expression was negatively correlated with MSI2 expression, T stage, vascular permeation and poor prognosis in PC patients. What's more, patients expressed high MSI2 and low ISYNA1 level had a significant worse prognosis. And in wtp53 Capan‐2 and SW1990 cells, ISYNA1 was downregulated by p53 silencing. ISYNA1 silencing promoted cell proliferation and cell cycle by inhibiting p21 and enhanced cell migration and invasion by upregulating ZEB‐1. However, MSI2 silencing upregulated ISYNA1 and p21 but downregulated ZEB‐1, which can be rescued by ISYNA1 silencing. Moreover, reduction of cell migration and invasion resulting from MSI2 silencing was significantly reversed by ISYNA1 silencing. In summary, MSI2 facilitates the development of PC through a novel ISYNA1‐p21/ZEB‐1 pathway, which provides new gene target therapy for PC.
Isoform-specific functions of Numb in the development of cancers, especially in the initiation of epithelial-to-mesenchymal transition (EMT) remains controversial. We study the specific function of Numb-PRRL isoform in activated EMT of pancreatic ductal adenocarcinoma (PC), which is distinguished from our previous studies that only focused on the total Numb protein. Numb-PRRL isoform was specifically overexpressed and silenced in PC cells combining with TGF-β1 and EGF stimulus. We systematically explored the potential effect of Numb-PRRL in the activated EMT of PC in vitro and in vivo. The total Numb protein was overexpressed in the normal pancreatic duct and well-differentiated PC by IHC. However, Numb-PRRS isoform but not Numb-PRRL showed dominant expression in PC tissues. Numb-PRRL overexpression promoted TGF-β1-induced EMT in PANC-1 and Miapaca-2 cells. TGF-β1-induced EMT-like cell morphology, cell invasion, and migration were enhanced in Numb-PRRL overexpressing groups following the increase of N-cadherin, Vimentin, Smad2/3, Snail1, Snail2, and cleaved-Notch1 and the decrease of E-cadherin. Numb-PRRL overexpression activated TGFβ1-Smad2/3-Snail1 signaling was significantly reversed by the Notch1 inhibitor RO4929097. Conversely, Numb-PRRL silencing inhibited EGF-induced EMT in AsPC-1 and BxPC-3 cells following the activation of EGFR-ERK/MAPK signaling via phosphorylating EGFR at tyrosine 1045. In vivo, Numb-PRRL overexpression or silencing promoted or inhibited subcutaneous tumor size and distant liver metastases via regulating EMT and Snail signaling, respectively. Numb-PRRL promotes TGF-β1- and EGF-induced EMT in PC by regulating TGF-β1-Smad2/3-Snail and EGF-induced EGFR-ERK/MAPK signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.