Imaging spectrometers show great potential for environmental and biomedical sensing applications. Selfie sticks, which are tools used to take photographs or videos, have gained global popularity in recent years. Few people have connected these two objects, and few people have researched the application of imaging spectrometers to perform scientific monitoring in point-of-use scenarios. In this paper, we develop a compact imaging spectrometer (35 g in weight, 18 mm in diameter, and 72 mm in length) that can be equipped on a motorized selfie stick to perform remote sensing. We applied this system to perform environmental and facial remote sensing via motorized scanning. The absorption of chlorophyll and hemoglobin can be found in the reflectance spectra, indicating that our system can be used in urban greening monitoring and point-of-care testing. In addition, this compact imaging spectrometer was also easily attached to an underwater dome port and a quad-rotor unmanned aerial vehicle to perform underwater and airborne spectral detection. Our system offers a route toward mobile imaging spectrometers used in daily life.
Assessing the species diversity of an urban forest is important for understanding its structure and functions, but the result can be affected by sampling methods, times, and delimitations of the study area. In this study, we examined the influence of different ways to delimit boundaries of urban areas on the assessment of species diversity of urban forests through a case study conducted in Haikou, China. We surveyed the species diversity of the urban forest in Haikou twice using the same sampling protocol but two commonly used delimitations of the urban area. The two surveys produced significantly different estimates of species richness of the urban forest. Recorded species richness was 228 (144 woody and 84 herbaceous species) and 303 (164 woody and 139 herbaceous species) for the first and the second survey, respectively. The rarefaction analysis indicated that species richness of woody plants recorded in the two surveys could converge by doubling the sample size, but species richness of herbaceous plants was significantly different between the two surveys at the 95% confidence interval even at three times the original sample size. The value of the Simpson dissimilarity index between the two surveys was 0.417 and 0.357 for woody and herbaceous plants respectively, which implied noticeable dissimilarity of species compositions of plant assemblages in the two areas. We concluded that the assessment of biodiversity of an urban forest can be affected significantly by how the boundary of an urban area is defined. Caution should be taken when comparing species diversities of urban forests reported in different studies, especially when richness measures are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.