This paper presents a novel demand response estimation framework for residential and commercial buildings using a combination of EnergyPlus and two-state models for thermostatically controlled loads. Specifically, EnergyPlus models for commercial and multi-dwelling residential units are applied to construct exhaustive datasets (i.e., with more than 300M data points) that capture the detailed load response and complex thermodynamics of several building types. Subsequently, regression models are fit to each dataset to predict DR potential based on key inputs, including hour of day, set point change and outside air temperature. For single residential units, and residential thermostatically controlled loads (i.e. water heaters and refrigerators) a two-state model from the literature is applied. The proposed framework is then validated for commercial buildings through a comparison with a dataset composed of 11 buildings during 12 demand response events. In addition, the use of the proposed simplified DR estimation framework is presented in terms of two cases (1) peak load shed prediction in an individual building and (2) aggregated DR up/down capacity from a large-scale group of different buildings.
This paper discusses how to optimize pre-cooling strategies for buildings in a hot California climate zone with the Demand Response Quick Assessment Tool (DRQAT), a building energy simulation tool. This paper outlines the procedure used to develop and calibrate DRQAT simulation models, and applies this procedure to eleven field test buildings. The results of a comparison between the measured demand savings during the peak period and the savings predicted by the simulation model indicate that the predicted demand shed match well with measured data for the corresponding Auto-Demand Response (Auto-DR) days. The study shows that the accuracy of the simulation models is greatly improved after calibrating the initial models with measured data. These improved models can be used to predict load reductions for automated demand response events. The simulation results were compared with field test data to confirm the actual effect of demand response strategies. Results indicate that the optimal demand response strategies worked well for most of the buildings tested in this hot climate zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.