In this paper, short-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0, 2, 5 and 10 vol.%) were fabricated by spark-plasma-sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 oC. The effects of Csf addition on the phase compositions, microstructures and mechanical properties (including hardness, flexural strength and fracture toughness) of Csf/Ti3SiC2 composites were investigated. The Csf, with a bi-layered transition layers, i.e. TiC and SiC layer, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the fracture toughness of Csf/Ti3SiC2 composites increased, but the flexural strength decreased, while the Vickers hardness decreased initially then increased steadily when the Csf content was higher than 2 vol.%. These changed performances could be attributed to the introduction of Csf and the formation of much stronger interfacial phases.
In this paper, short-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0, 2, 5 and 10 vol.%) were fabricated by spark-plasma-sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 oC. The effects of Csf addition on the phase compositions, microstructures and mechanical properties (including hardness, flexural strength and fracture toughness) of Csf/Ti3SiC2 composites were investigated. The Csf, with a bi-layered transition layers, i.e. TiC and SiC layer, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the fracture toughness of Csf/Ti3SiC2 composites increased, but the flexural strength decreased, while the Vickers hardness decreased initially then increased steadily when the Csf content was higher than 2 vol.%. These changed performances could be attributed to the introduction of Csf and the formation of much stronger interfacial phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.