Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.
Considering the wear in mechanical bearings and the requirement for sensors or electrical power in active magnetic bearings, a novel nutation blood pump using a passive magnetic spherical bearing was developed in this paper. A mathematical model was derived to calculate the magnetic forces of the bearing between two pairs of magnetic sleeves in the nutation process. The calculation results demonstrate that the fluctuations of magnetic forces enlarge with the increase in the nutation angle; the magnetic forces obviously increase with the decrease in the air gap, especially along the z-axis. The dynamic magnetic finite element simulation was carried out to validate the mathematical model. The simulation and calculation results of the magnetic forces show consistent trends and provide a theoretical basis for the parameter design. To validate the performance of the pump, computational fluid dynamics (CFD) analyses and in vitro experiments were conducted. The predicted values of the flow velocity vector through the pump, and the wall shear stress, demonstrate that the pump has an antithrombotic property and would not cause serious blood damage. The hydraulic experiment shows that a pressure rise can be achieved in the range of 60-140 mmHg, at a rotational speed of 600-1600 rpm and a flow rate of 0.4-6.7 L/min. The normalized index of hemolysis (NIH) of the nutation pump was 0.0043 ± 0.0008 g/100L. The in vitro tests indicate the feasibility of a magnetically levitated ventricular-assist nutation blood pump for further suspension stability and animal trials.
Blade geometry design is crucial for turbomachinery performance and stability. A blade optimization method is developed and presented in this paper. The method consists of several elements: geometry parameterization, numerical simulation of flow and performance, optimization algorithm. Sweep and lean are defined by centroid coordinates of sectional blades while the blade geometry is represented by B-Splines approach, through which deformation of blade shape in terms of sweep and lean can then be readily realized. Flow simulation is carried out with a commercial CFD package-NUMECA. In addition, response surface is incorporated to approximate the objective function during the optimization process for the purpose of time-saving, and two different models (polynomial model and basic-function model) are applied respectively to construct the response surface and their differences highlighted. Genetic Algorithms is incorporated to achieve a global optimal geometry of blade. For case study, the developed method was used to optimize the transonic NASA Rotor67 blading. It is demonstrated that an optimal tuning of blade sweep and lean results in evident improvement of both isentropic efficiency and pressure ratio at design and off-design flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.