The centrosome composed of a pair of centrioles (mother and daughter) and pericentriolar material, and is mainly responsible for microtubule nucleation and anchorage in animal cells. The subdistal appendage (SDA) is a centriolar structure located at the mother centriole’s subdistal region, and it functions in microtubule anchorage. However, the molecular composition and detailed structure of the SDA remain largely unknown. Here, we identified α-taxilin and γ-taxilin as new SDA components that form a complex via their coiled-coil domains and that serve as a new subgroup during SDA hierarchical assembly. The taxilins’ SDA localization is dependent on ODF2, and α-taxilin recruits CEP170 to the SDA. Functional analyses suggest that α- and γ-taxilin are responsible for SDA structural integrity and centrosomal microtubule anchorage during interphase and for proper spindle orientation during metaphase. Our results shed light on the molecular components and functional understanding of the SDA hierarchical assembly and microtubule organization.
Advanced micro/nano-flexible sensors, displays, electronic skins, and other related devices provide considerable benefits compared to traditional technologies, aiding in the compactness of devices, enhancing energy efficiency, and improving system reliability. The creation of cost-effective, scalable, and high-resolution fabrication techniques for micro/nanostructures built from optoelectronic materials is crucial for downsizing to enhance overall efficiency and boost integration density. The electrohydrodynamic jet (EHD) printing technology is a novel additive manufacturing process that harnesses the power of electricity to create fluid motion, offering unparalleled benefits and a diverse spectrum of potential uses for microelectronic printing in terms of materials, precision, accuracy, and cost-effectiveness. This article summarizes various applications of EHD printing by categorizing them as zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) printing materials. Zero-dimensional (quantum dot) materials are predominantly utilized in LED applications owing to their superb optoelectronic properties, high color fidelity, adjustable color output, and impressive fluorescence quantum yield. One- and two-dimensional materials are primarily employed in FET and sensor technologies due to their distinctive physical structure and exceptional optoelectronic properties. Three-dimensional materials encompass nanometals, nanopolymers, nanoglass, and nanoporous materials, with nanometals and nanopolymers finding widespread application in EHD printing technology. We hope our work will facilitate the development of small-feature-size, large-scale flexible electronic devices via EHD printing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.